

The API Lifecycle
An Agile Process For Managing the Life of
an API

Nordic APIs

©2015 Nordic APIs AB

Contents

Preface . i

Envisioning The Entire API Lifecycle iii
#1: Analysis Stage v
#2: Development Stage vi
#3: Operations Stage vii
#4: Retirement Stage viii
Choose Your Adventure: ix

I Analysis Stage 1

1. Preparing Your API Business Strategy 2
1.1 Basic Things to Consider 3
1.2 Determine If An API Is Right For Your Spe-

cific Situation 4
1.3 Perform Market Research 4
1.4 Align Your API With Business Objectives . . 5
1.5 Select Your API Business Plan 7

2. Monetization Models 10
2.1 How Can You Measure If Your API Is Prof-

itable? . 11
2.2 API Monetization Trick #1: Charge Directly

for an API, by Call or Subscription 12

CONTENTS

2.3 API Monetization Trick #2: Using API Ac-
cess As A Premium Upsell Opportunity . . . 13

2.4 API Monetization Trick #3: Drive Revenue-
Generating Activities Through Your API . . 14

2.5 API Monetization Trick #4: Increase Distri-
bution Through Strategic Partners 14

2.6 API Monetization Trick #5: Improve Op-
erational Efficiency and Decrease Time to
Market . 15

2.7 Mix, Match, Measure Models of API Mone-
tization . 17

2.8 Your API Monetization Checklist 17

3. Understandig Your Target API Consumer . . . 19
3.1 A Response to Increased Consumer Diversity 19
3.2 Why Create a Developer “Persona”? 21
3.3 The Developer Brain 22
3.4 But Plenty of Other People Are Interested

in APIs, Too! 23
3.5 Expanding our Portal: End User Evangelism 24
3.6 Varying Industry Backgrounds 25
3.7 API Use Cases 26
3.8 Lessen The Corporate Branding 27
3.9 Developer Experience 27
3.10 Build it And They Will _____ 28

II Development Stage 30

4. Constructing Your API 31
4.1 Things to Consider During Implementation 31
4.2 API Management 33
4.3 Maintenance 35

5. 12 Design Tips . 39

CONTENTS

5.1 Summarizing API Design Tips 48

III Operations Stage 50

6. Marketing Your API 51
6.1 Running Your API As a Product 51
6.2 Marketing Your API 54
6.3 Using Different Traction Channels 56
6.4 Supporting Your API 58

7. The Importance of API Metrics 60
7.1 What Is Metric Analysis? 61
7.2 Metric Analysis Tools and Services 62
7.3 Example — The Tokyo Traffic Problem . . . 63
7.4 The Traffic Problem Solution 65
7.5 The Traffic Problem and APIs 66
7.6 Metrics Throughout the Lifecycle 66
7.7 A Real-World Failure - Heartbleed 68
7.8 A Real-World Success - The FedEx ShipAPI . 69
7.9 Security, Effectiveness, and Commerce . . 70

IV Retirement Stage 72

8. A History of Major Public API Retirements . . 73
8.1 What Does Retirement Mean? 73
8.2 Retirement Reason #1: Lack of 3rd Party

Developer Innovation 74
8.3 Retirement Reason #2: Opposing Financial

Incentive, Competition 75
8.4 Retirement Reason #3: Changes in Tech-

nology & Consolidating Internal Services . 76
8.5 Retirement Reason #4: Versioning 77
8.6 Retirement Reason #5: Security Concern . 79

CONTENTS

9. Preparing For a Deprecation 80
9.1 Rippling Effects 81
9.2 Preparing For Developer Reaction 81

V The Agile Mindset 85

10. What Makes an Agile API? 87
10.1 What is Agile? 88
10.2 Conclusion 91

11. Case Study: PlanMill API 93
11.1 What is an ERP? 94
11.2 The Slow Initial Release 94
11.3 API Usability Problems 95
11.4 Improved Process for API 2.0 96
11.5 Specific ArchitectureDecisionsMadeAlong

the Way . 97
11.6 Sharing Data Carefully and Securely 99
11.7 Understanding the Lifecycle of an API . . . 100
11.8 Additional Resources: 100

12. Third Party Tools 101

Nordic APIs Resources 104

Endnotes . 106

Preface
Nordic APIs has been in operation for about 2 years.
Within that short time we’ve hosted hundreds of API-
specific presentations featuring international experts -
giving us the opportunity to take a peek into the inner
workings of leading web API-driven businesses.

Throughout our work we’ve discovered a recurring trend:
unsuccessful APIs struggle both in fostering interest as
well as creating a sustainable service. In contrast, success-
ful APIs are well-attended, treated as a product with a
multi-iterative lifecycle. So we thought; what exactly are
the key ingredients to their successes?

Our fourth eBook, The API Lifecycle, presents an agile pro-
cess for managing the life of an API - the secret sauce to
help establish quality standards for all API and microser-
vice providers. This handbook depicts a holistic model
that treats a web API as a constantly evolving business
and product. From conception through deprecation, it
outlines instructions on market research, business strat-
egy, development, operations, promotion, and other vital
components for successfully creating and maintaining an
API.

Inspired by experienced API consultants Andreas Krohn
andTravis Spencer, theAPI Lifecycle diagram is composed
of four distinct phases: Analysis, Development, Opera-
tions, and Retirement. Our eBook expands theses con-
cepts, grounding theories in knowledge collected during
our 2015 World Tour, events which brought API industry
experts together to discuss different stages of the API

i

http://andreaskrohn.se/
http://travisspencer.com/
http://nordicapis.com/tour/nordic-apis-world-tour-2015/

Preface ii

Lifecycle. We also delved deeper into these ideas within
our blog, interviewing leading web API figures to perform
additional research, and peppered it all with a bit of
our own insights to create a comprehensive overview of
what to consider during the entire product lifecycle of a
profitable web API.

Please enjoy The API Lifecycle, and let us know how we
can improve. Be sure to join the Nordic APIs newsletter
for updates, and follow us for news on upcoming events.

Thank you for reading!

– Bill Doerrfeld, Editor in Chief, Nordic APIs

Connect with Nordic APIs:

Facebook | Twitter | Linkedin | Google+ | YouTube

Blog | Home | Newsletter | Contact

http://nordicapis.com/what-is-the-future-of-the-api-space/
http://nordicapis.com/blog
http://nordicapis.com/newsletter/
http://nordicapis.com/event-calendar/
http://facebook.com/nordicapis
http://twitter.com/nordicapis
https://www.linkedin.com/company/nordic-apis
https://plus.google.com/u/0/+Nordicapis/posts
https://www.youtube.com/user/nordicapis
http://nordicapis.com/blog/
http://nordicapis.com
http://nordicapis.com/newsletter/
mailto:info@nordicapis.com

Envisioning The Entire API
Lifecycle

From conception to deprecation, a Software-as-a-service
(SaaS) is prone to constant evolution. Check the changelog
for a high-volumeplatform like Dropbox for proof. In such
logs, you’ll find bug fixes and updates, with the latest likely
made within the past couple weeks.

The APIs that open these SaaS platforms are changing just
as rapidly. So much so that API Changelog was created to
notify users of API documentation changes (22 updates in
the last 30 days in the case of the Dropbox API at the time
of this writing). This ongoing iterative process is not only

iii

http://en.wikipedia.org/wiki/Software_as_a_service
https://www.dropbox.com/release_notes
https://www.apichangelog.com
https://www.apichangelog.com/api/dropbox

Envisioning The Entire API Lifecycle iv

agile - it’s evolution is in symbiosis with many business
factors that make up the organism that is the entire API
lifecycle.

As the main function of web APIs are to be consumed by
third party products, the API is a unique type of business
offering. It’s peculiar condition as both a software and
internal asset makes its lifecycle special – highly fueled
by ongoing feedback and market validation. Compared
with standard SaaS products that may have the power to
change their UI or underlying construct, an API’s granular
state can make it even more elusive.

The State of Modern Software Development

Agile…Scrum…contemporary software development pushes
toward quick releases and fluid responses. Response to
change needs to be rapidly executed, leveraging user
feedback, data, and statistics. These traits are becoming
standard practice throughout the software realm. But is
producing and maintaining an API the same – or is it a
different animal entirely?

The API As a Living, Breathing Organism

Exactly how an API lifecycle looks depends on how the API
functions as well as the business strategy at it’s core. We
at Nordic APIs have boiled down the common API lifecycle
to four main phases: Analysis, Development, Opera-
tions, andRetirement. As seenmapped out above, these
elements work together and influence each-other. Once
the cycle begins, open and simultaneous exchange be-
tween each phase will help a practitioner stabilize the API
against internal and external factors. New information
that arises within each stage may beckon a team to move

http://nordicapis.com/what-makes-an-agile-api/
http://en.wikipedia.org/wiki/Scrum_%28software_development%29

Envisioning The Entire API Lifecycle v

forward or backward in the lifecycle, encouraging small
revisions or large pivoting to reach end project goals.
In this introductory chapter we will introduce the main
phases of the cycle, each to be covered in depth in the
following chapters to come.

#1: Analysis Stage

This stage involves defin-
ing overall API business
objectives. Firms should
critically ask themselves
whether or not an API
is right for their partic-
ular situation. Some in-
dustries, such as social

networks, thrive off APIs as a natural extension of their
digital ecosystem. On the other hand, traditionally non-
digital companies must be creative in handling how APIs
extend their business model.

An API should either boost pre-existing operations or
work toward overall company goals in some way. In our
e-book Developing the API Mindset we defined 3 types of
APIs:

• Private APIs streamline internal operations to de-
crease expenses.

• Partner APIs work specifically with partner orga-
nizations to expand a service’s reach to existing
markets to generate revenue.

• Public APIs form new ecosystems by opening up
a service to public access. If you intend to have a
public release, obtain feedback while you perform

http://nordicapis.com/developing-the-api-mindset-private-partner-and-public-apis/

Envisioning The Entire API Lifecycle vi

analysis to gauge interest and determine access
control.

Whatever the chosen API strategy is, it’s mission state-
ment, usage projections, model for growth, marketing
strategy, and estimated financial return should be clearly
laid out before production begins. If you’ve done the nec-
essary preparation, it’s time tomove to theDevelopment
Stage.

#2: Development Stage

With business proof and
goals laid out, the next
step is defining technical
requirements andoppor-
tunities that are in co-
operation with the API
strategy. Development plans
need to consider the fol-

lowing:

• what operations the API will execute
• management and hosting
• the methods and protocols used
• size and scalability
• access and security control
• usability and experience
• the development team … among other factors

An intimate understanding of API processeswill help form
technical requirements. For example, knowing whether

http://nordicapis.com/should-you-control-how-your-public-api-is-used/
http://nordicapis.com/should-you-control-how-your-public-api-is-used/
http://nordicapis.com/achieve-accelerated-growth-apis/
http://nordicapis.com/5-ways-apis-will-increase-revenue/
http://nordicapis.com/rest-better-than-soap-yes-use-cases/

Envisioning The Entire API Lifecycle vii

your API will open your firms’ data, or act as a content
distribution channel can impact overall design.

In general, the API development stage should mimic the
business objectives set forth within the Analysis phase.
A methodical development phase considers design, con-
struction and testing of API processes as well as security.
Design your API with both human usability and machine
standards in mind. It is a good idea at this point to also
implement and evaluate API versioning strategies that will
set the API in a good position for future updates.

During the Development Stage, a team may choose to
return to the Analysis Stage to perform additional mar-
ket research and general preparation. This can arise from
technical roadblocks, or the urge to revision an APIs’ pri-
mary objectives. If the API feels polished, tested, secure,
and ready for general use, you are ready to move to the
Operations Stage.

#3: Operations Stage

If you’re team’s lean as
flank steak, you may be
sprinting a minimum vi-
able product straight to
the masses. With loose
nuts and bolts, it’s nat-
ural that the Operations
Stage will involve a lot of

tweaking and bug-fixing in addition to marketing.

To spread awareness, API providers canhosthackathons,
improve SEO for home page and documentation, have a
dedicated @Dev channel, and use popular discoverabil-
itymethods and channels. If the resources are available,

http://nordicapis.com/open-data-how-to-make-it-work-for-your-business/
http://nordicapis.com/apis-as-a-content-distribution-channel/
http://nordicapis.com/apis-as-a-content-distribution-channel/
http://nordicapis.com/api-design-testing-state-art/
http://nordicapis.com/api-design-testing-state-art/
http://nordicapis.com/designing-apis-humans/
http://nordicapis.com/designing-apis-machines/
http://nordicapis.com/designing-apis-machines/

Envisioning The Entire API Lifecycle viii

companies should also employ a dedicated API Evange-
list to promote the API at physical events and throughout
the blogosphere.

In the end,marketing an API largely depends on an inside-
out approach. Having an easy-to-consume development
portal, an embedded help desk, along with other DX
driven suggestions we’ve laid out in the past will help
boost conversion rates.

This part of the lifecycle will likely take the most energy
and time.Monitor usage statistics, and engagewith users.
Use any helpful data to aid in constant revising. Especially
if an API program is in a closed beta, inbound tactics
to collect feedback will help tremendously to aid in this
iterative development process. Make sure that all API
changes are well documented on your release notes.

This exciting stage will bestow on an API practitioner
real market requirements, and could potentially expose
a business to entirely new opportunities. Statistics and
data collected here will impact tech requirements that
could result in revisiting theDevelopment Stage tomake
incremental changes or new API versions, or consulting
theAnalysis Stage tomake larger pivots. If forecasts look
grim, a team may consider moving to the Retirement
Stage at this point.

#4: Retirement Stage

Old age comes, and retirement is a part of life. It’s no
different in the API world. It’s good to know what factors
contribute to small revisions as well as large depreca-
tions. In this stage, a provider may decide to retire an API
due to limited use, outdated plugins, a lack of 3rd party
innovations, opposing financial incentives, and more. A

http://nordicapis.com/designing-apis-humans/
http://nordicapis.com/designing-apis-humans/
http://nordicapis.com/why-api-developer-experience-matters-more-than-ever/
http://nordicapis.com/why-api-developer-experience-matters-more-than-ever/

Envisioning The Entire API Lifecycle ix

businessmay risk losing an advantage if an API decreases
traffic from native distribution channels.

Versioning, deprecation,
or lassoing in an API into
a more internal state
are options to consider
if your key performance
indicators are showing a
flatline. At this point, the
Analysis Stage can be

reattempted, and the lifecycle repeated if viable. A Public
API may still prove profitable as a Partner offering, for
example. Retiring an API or API version is the best option
when the API no longer is the best solution to reach the
goals of the business. Whatever the solution is, we rec-
ommend a transparent public announcement that offers
a reasonable timeline.

Choose Your Adventure:

In this chapter we’ve given a 30,000 foot view of the some-
what untraditional API lifecycle. Further chapterswill offer
fine-grained perspectives on each stage in the lifecycle,
bolstered by specific industry use cases that demonstrate
effective strategies for each. Here’s where we’re going:

1. Analysis Stage
2. Development Stage
3. Operations Stage
4. Retirement Stage

I Analysis Stage

An API comes with an active product lifecycle that’s teth-
ered between internal evolution and third party fluctua-
tion. Within this part we’ll begin to take a deeper look into
our first step of the Lifecycle process to consider what
preparation should be done within the Analysis Stage -
before developing your API.

1. Preparing Your API
Business Strategy

Overlooked by some, the Analysis Stage should be the
first stop on any API’s lifecycle. It involves research and
critical decision making that will impact all future designs
of your API. The purpose is to validate why your organiza-
tion needs an API and who is going to use it.

This crucial stage forms a business plan for an API in
it’s entirety. Within this pre-development API phase, you
should gauge interest fromyour target audience, perform
market research, forecast trends within your sector, and
make usage projections. To form a strategy, you’ll want to
decide on your API’s business objective and what core API

2

Preparing Your API Business Strategy 3

functionalities can help achieve this result, and then pair
this knowledge with appropriate revenue models.

Defining the above points will help an organization allo-
cate resources for development, operations, and market-
ing, and should help in estimating your API’s ROI. This
preparation will also supply a roadmap for decision-mak-
ing throughout future API lifecycle stages.

1.1 Basic Things to Consider

Developing and releasing an API should be given the
same amount of preparation as a new product launch.
Especially if the API is a main offering, or is being built as
the underlying construct for an entire platform, the end
business objective should be in the forefront throughout
the entire lifecycle.

This early in the game, you’ll want to formulate answers
to the following questions:

• Why does my organization need an API?
• What functions will the API accomplish?
• What is the API value proposition?
• Who is my intended audience?
• Does my audience want to consume my API?
• If for public use, what sorts of third-party products
do you imagine being built with your API?

• Will the API be a core business offering?
• Does my organization possess the resources re-
quired to successfully develop and maintain an API?

• What sort of metrics should I consider during analy-
sis?

http://nordicapis.com/?p=3156

Preparing Your API Business Strategy 4

1.2 Determine If An API Is Right For Your
Specific Situation

For many companies, providing an API is seen as an IT
matter exclusive to internet giants like Twitter, Facebook
and Google, startups like Algolia, Wit.ai and Context.io, or
for government agencies to open data to the public. But
are APIs really limited in that way?

It’s true that even traditionally non-digital companies,
such as Bechtel, a construction and engineering firm,
Dun & Bradstreet, a business information company, and
Marvel comics have succeeded in creating awesome plat-
forms. At the end of the day, every company should
consider how they can use APIs to excel their business.

Many organizations develop an API to extend their cur-
rent functionalities. On the other hand, some businesses
move toward API platformitization, positioning the API as
a core value. Many facial recognition, natural language
processing, and machine learning services do just that.

1.3 Perform Market Research

As with any business endeavor, it’s vital to take a look at
what competitors are doing in your sector to gauge the
competition. Market research is a critical component of
your pre-launch strategy. Use existing API discoverability
tools to bolster your research.

Depending on the success of other APIs in the field, it may
help promote alternative methods or protocols within
your API. Create an account and perform test calls with a
competitor’s API, and imagine how the experience could
be improved. This will help refine where there is room for
your product in the market.

https://www.algolia.com/
https://wit.ai/
https://context.io/
http://developer.marvel.com/docs
http://nordicapis.com/should-every-company-consider-providing-an-api/
http://nordicapis.com/should-every-company-consider-providing-an-api/
http://blog.mashape.com/list-of-10-face-detection-recognition-apis/
http://blog.mashape.com/list-of-25-natural-language-processing-apis/
http://blog.mashape.com/list-of-25-natural-language-processing-apis/
http://blog.mashape.com/list-of-50-machine-learning-apis/
https://www.apirise.com/8-api-discovery-tools/
https://www.apirise.com/8-api-discovery-tools/

Preparing Your API Business Strategy 5

1.4 Align Your API With Business
Objectives

An API should either boost pre-existing operations or
work toward overall company goals in some way. In our
eBook Developing the API Mindset we defined a taxon-
omy of three types of APIs: Private, Partner, and Public.
Each have their own benefits and potential drawbacks.
API providers may consider using multiple strategies to
leverage their API and justify their Return on Investment
(ROI).

The Private API Strategy

Types of industries that flourish using an
internal API are ones that need their data
secured, or ones that wouldn’t profit from
distributing their data. These businesses
greatly benefit from a method of stream-

lining internal operations. For example, banks commonly
use internal APIs to transfer funds and achieve internal
efficiency.

The benefits of a private API may be:

• Streamlines internal operations
• Consolidates distribution channels
• Data is not exposed publicly, boosting security

Potential drawbacksmay be:

• Potential revenue streams are not accessible
• Not as many developers are aware that your API
exists

http://nordicapis.com/developing-the-api-mindset-private-partner-and-public-apis/

Preparing Your API Business Strategy 6

The Partner API Strategy

Many enterprise applications choose to
partner their API with trusted partners in
large data exchange dealings. Take the
ESPN sports API, for example. Their public
API was reigned in as it was decreasing the

value of their primary distribution channel. Now ESPN API
integrations are being done partner organizations.

Benefits of opening up an API for B2B exchange:

• Data is not entirely exposed publicly, retaining secu-
rity and data control

• B2B dealings could potentially produce large rev-
enue and mutually beneficial data exchanges

• Spreads assets to reputable, established services
with pre-existing markets

Potential drawbacks of a sole partner strategy may be:

• Some revenue streams are not accessible via open
means

• Noopendeveloper ecosystem is created, awareness
is still limited

The Public API Strategy

The Public API is what we often mean
when we talk about web APIs. This is a
service opened to third-party developers
to integrate into their apps. Anything from
social networks, rideshares, project man-

agement apps, data processing tools, and more are com-
mon areas where a service is opened for third party

http://developer.espn.com/docs

Preparing Your API Business Strategy 7

developers to consume in amutually beneficial exchange.
With this strategy, the provider may charge usage fees,
or create a free-to-consume platform to spread brand
awareness.

Benefits:

• Extending a service’s brand to additional apps aids
marketing and awareness

• Could produce a profitable ecosystem if developers
are willing to pay for your service

• Potentially improves experience for more end users

Drawbacks:

• Select assets are exposed for public, losing data
privatization

• With greater awareness comes greater risk of secu-
rity threat

• Third-party apps may not be as reputable or estab-
lished

• Timeline for ROI is increased

1.5 Select Your API Business Plan

Estimating financial returns from an API can be difficult
to perceive. With Public APIs, for example, revenue gen-
eration from third-party apps can take twice the normal
time, as you must wait for a second product’s lifecycle to
reach sustainable operations and acquire end users. In
free-to-consume scenarios, the offering may not directly
generate revenue, but may boost brand awareness that
could ultimately lead to growth or even help leverage
deals within an acquisition.

http://nordicapis.com/3-steps-to-increasing-brand-awareness-with-apis/

Preparing Your API Business Strategy 8

John Musser, founder of API Science, believes that “API
business models are not size fits all,” having identified at
least 20 variations in API business models throughout his
work in the space.

Tiered subscription, pay as you go, freemium, unit based,
revenue share - there are many monetization possibil-
ities, and in the end, most APIs have a diversified ROI
system that fits their service. In the next chapter, we’ll
discuss ways to monetize your API.

http://www.slideshare.net/jmusser/j-musser-apibizmodels2013

Preparing Your API Business Strategy 9

For
more on API business strategy check out Developing The
API Mindset

2. Monetization Models

Before development, it’s crucial to consider how your API
will boost overall revenue. This last Analysis Stage chapter
guides you to doing just that. We offer you the top 5 API
monetization models with the hope of helping you, as
an API provider, bring value to developers and end users,
and financially gain from hosting your API.

10

Monetization Models 11

2.1 How Can You Measure If Your API Is
Profitable?

Rob Zazueta is the director of platform strategy at Intel.
His team focuses on helping clients manage, market,
and monetize APIs by identifying strategies to align with
business objectives. At his talk last October at the 2014
Nordic Platform Summit in Stockholm, Zazueta focused
on the third tier of Intel’s approach: how to monetize
your API.

According to Zazueta, “The success of an API program
is measured by how well it moves a business toward
its goals.” With everything your business does, you must
keep an eye on your return on investment. To avoid an
unsuccessful venture, before API development you need
to consider common steps toward API monetization and
if they apply to your situation.

In order to determine if something is going to be prof-
itable you must measure it. Zazueta recommends using a
simple Average Revenue Per User Model (ARPU) to help
decide how to increase revenue, whether by increasing
price or attracting more users. With any API monetization
model, you want to compare the ARPU of your API-using
customers against the ARPU of those who don’t.

https://twitter.com/rzazueta
http://www.mashery.com/services/strategy-services

Monetization Models 12

2.2 API Monetization Trick #1: Charge
Directly for an API, by Call or
Subscription

This is the most obvious method of monetizing anything
- directly charging for it. But just because it’s simple to
measure doesn’t mean it’ll be successful. The strategy
works “if your data has the kind of value that people want
to pay for,” Zazueta says. Before jumping right in, you
should talk to your customers to see if they’d be willing
to pay for these services and for how much.

Direct sales is perhaps the easiest way to sell your API,
but Zazueta says it could also be the most challenging
as it may be difficult for your developer audience to see
the value of it. He recommends to start with a Freemium

Monetization Models 13

Model to offer a taste of the data that developers would
have access to, and hope it leaves them wanting more.

2.3 API Monetization Trick #2: Using API
Access As A Premium Upsell
Opportunity

This is a trick used in the SaaS world a lot, like with the
POS giant Salesforce. Adding API access to a Premium
subscription offers a strong motivator to upgrade to a
higher package, as it allows end users to customize their
experience and workflow more easily. API access is usu-
ally one of multiple added benefits that come along with
subscribing to a higher package, making this a tricker
monetization model to measure. Zazueta offers these
attempts to measure this model:

1. Compare sale of packages with API included versus
those without.

2. Have your sales team mark “Level of Interest in API”
in sales notes.

3. Measure the number of API calls from users on that
Premium package.

4. Measure ARPU or revenue generated by active API
users versus non-active ones.

In addition, you can also measure the subscription re-
newal rate of API users versus those that don’t use this
package feature.

Monetization Models 14

2.4 API Monetization Trick #3: Drive
Revenue-Generating Activities
Through Your API

This model takes the most effort to track because it often
supports indirect revenue. Depending on the situation, it
could be the API monetizationmethodmost applicable to
your overall business goals.

For example, email marketing software is often mone-
tized by the email sent, but APIs are used to filter contacts
automatically from a customer relationship management
software (CRM). Without the contacts, you can’t send the
emails, which is why tracking the number of contacts that
come in through the API is an excellent way to prove its
value. Plus you can compare if users with the API send
more emails— which affects revenue— than those users
without the API.

Another method is to track if your application is actually
driving leads. If you sign a pay-per-lead (PPL) agreement
with a customer, you can track that lead via your CRM. For
both of these, tracking can be complex if more than one
third-party application is integrated,meaning increasingly
granular measurements need to be made.

2.5 API Monetization Trick #4: Increase
Distribution Through Strategic
Partners

In the SaaS world, integrating your API with a strategic
partner has the potential to open your API to entire pre-
established markets. This enables you to market your
brand to a broader audience to attract more potential

Monetization Models 15

customers. For example, PayPal and Stripe allow services
and sellers to use their API because it offers an easy way
to get paid, and, of course, the more transactions, the
more money these popular payment services earn.

This strategy can also aid in user retention. If your cus-
tomers also have a subscription with your strategic inte-
gration partner, they are less likely to disrupt their work-
flow by leaving either of you. There is no questioning the
value of these strategic partnerships for the consistently
demanding end user, who can now build a customized
workflow out of the integrated cloud tools now available.
Plus, these type of integrations are on the rise:

“We see the rise of best-in-breed solutions as the next nat-
ural progression,” said senior vice president of product
at Zendesk help desk software, Adrian McDermott. “If the
Internet is the platform, then the need to be integrated
by a single provider becomes obsolete - multiple best-
in-breed solutions can run seamlessly via the Internet,
without needing to be overseen by one organization.”

It’s important with strategic partnerships to create a mu-
tually beneficial shared data agreement. You want to
know how much your API is helping their business, and
similarly, they want to know the effect of their product on
yours.

2.6 API Monetization Trick #5: Improve
Operational Efficiency and Decrease
Time to Market

“Well-built, well-designed APIs help you build applications
faster. It helps you innovate faster. More importantly, it
helps you fail faster,” Zazueta says. “If you build a well-

http://zendesk.com

Monetization Models 16

built API that’s secure and properly managed… and you
treat that internally focused audience as your customers,
you can actually get all kinds of great benefits.” Zazueta
says that he’s seen internal processes in companies speed
up from a couple months to a couple hours, solely be-
cause of the efficiency gained from an API.

Some additional benefits from using an internal API in-
clude:

• Faster customer onboarding
• Deeper access into data
• Tighter control over development
• Faster application building
• Faster testing of an application’s revenue potential

Internal APIs also suit the lean start-up model, where
you produce and release to market as quickly as possi-
ble. As this is the case, if the API isn’t so valuable, your
organization hasn’t wasted a lot of time and resources
implementing it - you’re able to pivot rapidly.

Since this is an internal benefit, you don’t use the ARPU
to measure it. You start by measuring the time it took to
build and introduce a certain function before the API and
after. You can also turn that into dollars by way of the
manpower needed. Of course, before making this move,
you need to make sure that it won’t take excessive effort
and resources to design and start using the API within
your internal systems. Review the existing processes be-
fore considering implementing this one.

Monetization Models 17

2.7 Mix, Match, Measure Models of API
Monetization

The reality is that your API monetization technique may
involve an assortment of thesemodels. Perhaps none are
perfect for your particular situation, but it’s very likely that
a couple of these API monetization tricks will work to help
generate revenue. As always, build what will work for you.

“The goal here is to build a successful API program that
moves the business toward its goals,” Zazueta says. “And
a program that’s not gonna do that won’t be successful for
long.” You might be using one or more models already,
but it won’t matter until you measure its success.

2.8 Your API Monetization Checklist

We created this checklist to make it easy for you to figure
out if you are able to monetize your API quickly. A Yes or
a Maybe is certainly worth considering:

1. Are you able to profit from charging for your API
directly?

2. Can giving access to your API be an upsell opportu-
nity?

3. Are there ways to drive revenue indirectly through
your API?

4. Do you have opportunities to make strategic API
partnership?

5. Can an API improve operational efficiency and de-
crease time to market?

Then, as you implement an API monetization strategy
there are two questions to constantly keep on your mind:

Monetization Models 18

• Are youmeasuringAverageRevenuePerUser (APRU)
throughout eachpossible API-related revenue source?

• Are you comparing this APRU with the APRU of
customers who don’t use your API?

As with anything, make sure that your API monetization
strategy is directly in line with your business objectives. If
it’s clearly not, don’t waste your time.

3. Understandig Your
Target API Consumer

Consumer profiling that is a necessary first step for any
business venture. For this chapter we cover strategies
that help understand your target user within the specific
context of APIs.

3.1 A Response to Increased Consumer
Diversity

Within any economy showing such exponential growth,
the diversity of its players will naturally increase as the

19

Understandig Your Target API Consumer 20

market evolves. It’s a fact that the API space is becoming
increasingly diverse — it’s not the old days where a few
independent developers created mashups for fun. APIs
have entered large business dealings, gained the atten-
tion of enterprise-level product designers, led to the cre-
ation of multi-billion dollar startups, influenced creative
marketing campaigns, and more.

So, with all this new interest from varying audiences, API
providers may be asking: who are we selling to?

At Nordic APIs, we’ve tracked the explosion of this innova-
tion, watching as new players step up to play ball — either
connecting or striking out in deprecation. With more and
more consumers entering the API space, it’s now more
important than ever to consider the large breadth of
specializations amongst third party developers. These
factors take the form of:

• varying technical understanding
• different industry backgrounds
• geographical location
• online activity
• API use cases
• protocol preferences
• programming language preferences
• …and more.

Mike Kelly runs Stateless.co, an API strategy consulting
firm based in London. He describes the wide breadth of
developers currently in the space:

“There are of course broad categories such
as system integrators, mobile, web, embed-
ded systems. In reality there are innumerable

http://nordicapis.com/apis-are-evolving-the-b2b-landscape-2/
http://blog.apiary.io/2015/05/03/The-Role-of-the-API-Designer/
http://www.betaboston.com/news/2014/07/03/uber-mobile-app-cloud-service-api/
http://nordicapis.com/apis-part-of-the-creative-palette/
http://nordicapis.com/apis-part-of-the-creative-palette/
http://nordicapis.com/what-is-the-future-of-the-api-space/
http://nordicapis.com/what-is-the-future-of-the-api-space/
https://twitter.com/mikekelly85
http://stateless.co/

Understandig Your Target API Consumer 21

forms of developers each with their own set
of constraints and requirements, which is why
developing a set of realistic developer per-
sonas is important.”

3.2 Why Create a Developer “Persona”?

Traditional businessmodels necessitate a process of con-
sumer profiling. The same can be done in a way that
makes sense for this niche API sector. Intimately under-
standing your target consumer is crucial as it will influ-
ence the following:

• Market Fit: Knowing your consumer can help you
discover unmet needs in the market your API could
potentially satisfy.

• Functionality: Understanding use cases can help
design API functions around that need.

• Segmentation: Knowing your user can help seg-
ment marketing efforts and decrease customer ac-
quisition cost.

• Creative Marketing: Knowing what your audience
is interested in will help tailor your marketing to this
audience, influencing your message, tone, appear-
ance, design, style, and more to attract your target
audience.

Kelly goes on to mention the importance of establishing
developer personas is that they establish an important
frame of reference:

“If you’re unable to clearly describe your tar-
get customers and their use cases for your

Understandig Your Target API Consumer 22

API, that usually indicates that the underlying
proposition is not focused enough. Likewise,
if you’re unable to clearly determine how a
proposed feature provides immediate value to
one of your personas, that is a strong indicator
that it doesn’t belong on the roadmap yet…I’m
a huge fan of any methodology that encour-
ages approaching the strategy and design of
an API by focusing on the client side, rather
than the server side.”

3.3 The Developer Brain

‘Know your demographic.’ ‘Under-
stand the psychology of your con-
sumer.’ We hear phrases like this
frequently in general business dis-
cussion. Is it possible to apply the
same philosophy tomarketing APIs?

Developers are not your average
consumer. In a conversation with Nordic APIs, General
Manager Jason Hilton of Catcy Agency, an international
developer program management outfit, pinpointed the
following attributes. The developer brain is naturally an-
alytical. They appreciate authenticity. And in a sea of
competing tools with rampant overzealous marketing,
they have the right to be skeptical. Awebdeveloper espe-
cially wants to pick up and play with a product, expecting
an instant proof that it behaves as advertised.

Take these generalizations as you will, but they’re worth
to consider when developing a marketing message and
story applicable to this certain audience. Both content
and aesthetics can either incorporate or alienate depend-

https://twitter.com/catchyjason
http://catchyagency.com/

Understandig Your Target API Consumer 23

ing on their execution. Creating a developer portal, for
example, should, in response to our brief psychological
examination, be intuitively designed, with transparent
information, an attractive layout, and interactivemod-
ules that allow one to test API calls.

3.4 But Plenty of Other People Are
Interested in APIs, Too!

Andreas Krohn of Dopter urges us to consider a wider
scope with API marketing and evangelism. Instead of
focusing so heavily on developers, API providers should
create more inclusionary customer personas.

“I strongly dislike howdevelopers areworshipped
in marketing”

In his work at Dopter, an API strategy and consulting
firm, Krohn routinely encounters providers that want to
create hackathons to reach out to developers to promote
their APIs. Though that can be an effective strategy, are
developers really the sole audience that may be interested
in APIs? The truth is that designers, entrepreneurs, mar-
keters, and other business leads are just as important
constituents to consider when marketing an API.

Krohn believes we naturally target developers for the
following reasons:

1. APIs are technical.
2. Developers relate to other developers.
3. Influence of Silicon valley.
4. Myth of the single developer.

http://andreaskrohn.se/
https://twitter.com/dopterse

Understandig Your Target API Consumer 24

Though many people that are aware of APIs are devel-
opers, not everyone is a developer. We must remember
that the world is bigger than the Silicon Valley. Just as the
average smartphone user can brainstorm innovative app
ideas without needing to know how to code, there is a
similar low bar that allows anyone to understand the pos-
sibilities APIs offer to then envision creative applications.
In a company, products are developed by large teams —
entrepreneurs, project managers, designers, etc. Devel-
opers are crucial to any software process, but in reality,
a diverse array of experiences contribute to innovation in
the space.

3.5 Expanding our Portal: End User
Evangelism

If we incorporate a wider audience into our understand-
ing of their target API consumer, how does that change
the way an API is marketed?

Krohn encourages us to remember that real value is
only created when an end user uses the app that’s cre-
ated with the API. And who creates that experience? En-
trepreneurs may create the product, managers oversee
production, designers envision the user experience, de-
velopers connect the backend, and other domain experts
may contribute. All these stakeholders intimately under-
stand the value of API integrations, and thus all their
perspectives and needs should be considered.

Think of standard web API portals as they are now. Can
entrepreneurs immediately discern the end user value
when they view API documentation? More often than not,
their needs are excluded. There is a lack of high-level

Understandig Your Target API Consumer 25

summary and sample use cases to inspire non-technical
minds — this experience is often non-existent.

Krohn believes that developer evangelism should rather
be end user evangelism. As Krohn says, “be aware of who
you are including or excluding, and make it a conscious
decision.” Think you know your target audience? that may
soon change.

As the API space increases in diversity, more andmore attributes
make up the developers using them

3.6 Varying Industry Backgrounds

With the recent rise of B2B and enterprise interest, should
API providers be selling to individual developers? Or is it
a better idea to seek out business partnerships directly?
The way APIs aremarketed and consumed varies tremen-
dously on the industry. API providers may range from a
two person startup to an enterprise development team
spanning hundreds of employees. The same diversity is
present on the consumer end, affecting the way APIs are
acquired. The core value message also changes based on

Understandig Your Target API Consumer 26

whether the API is directed toward startups, engineers in
a large organization, or toward convincing upper leader-
ship. We can begin by separating the consumer side of
the API space into two distinct groups:

• Enterprise Developers: Developers working within
a large organization. The challenge faced here is that
theymay not be the decisionmaker. Working on the
inside, means they must make the case upwards,
involving multiple parties and potentially creating a
longer decision making process.

• Freelance Dev Shop: These are small startup teams
looking for helpful API integrations to accell their
product.

According to Jason Hilton of Catchy Agency, industry vari-
ancemean it’s “It’s worth applying specific techniques and
strategies. Just as much energy and consideration needs
to be put intomarketing a developer program as with any
other product.”

3.7 API Use Cases

API providers must imagine the API’s use case in the wild.
Why would someone want to use your API? Providers
should consider the possibilities the data offers andbrain-
storm applications that could be created using the API.
Kelly believes this process will help identify consumer
needs:

“The key to a good persona is in establishing
concrete user scenarios and stories…You need
to understand the needs of your customer
before deciding what to offer them.”

Understandig Your Target API Consumer 27

This process also involves considering thebusinessmodel
of the product that will be created using the API. Hilton
notes that “the business model of the API is important
— we know that serious developers will monetize either
through paid apps, or carrying ads. Trying to get the de-
veloper of a paid app to implement an ad API is pointless.”

3.8 Lessen The Corporate Branding

Marketing, relations, outreach — typical B2B sales mo-
tives, labels, and tactics may conjure up negative conno-
tations. At times, enterprise clientele may need to lessen
the corporate branding to appeal to the tech community.
Within the tech community the Evangelist job function is
now more commonplace than ever. Alternative roles like
“evangelist” or “developer advocate” help communicate a
true passion, and having a passion, and a true conviction
for what you are promoting will win the day. The lesson
of 2015, according to the Catchy team, is that “If you have
a developer evangelist, you have a dev program.”

3.9 Developer Experience

Thepresentation of developer facingmaterial is paramount
to success in the space. API providers can use tactics to
help acquire developers, increase onboarding efficiency,
and maintain user retention by appealing to the tastes
and needs of the audience. Stellar reasoning behind cre-
ating quality developer experience can be found in John
Musser’s “10 Reasons Why Developers Hate Your API.”
Harking back to Andreas Krohn’s stance on the need for
increased inclusion, API experience should also consider
the entrepreneur experience, the manager experience,

http://timoelliott.com/blog/2013/07/how-to-become-a-technology-evangelist.html
http://timoelliott.com/blog/2013/07/how-to-become-a-technology-evangelist.html
http://www.slideshare.net/jmusser/ten-reasons-developershateyourapi

Understandig Your Target API Consumer 28

and the designer experience. In that spirit, embrace de-
veloper language, but also cater content, appearance, UI,
and UX to your audience. According to Kelly, “developer
experience is the most important metric of quality for an
API. It’s vital.”

3.10 Build it And They Will _____

Simply opening a platform up without having a intimate
knowledge of your consumer will not work in this sec-
tor. Product teams within technology companies often
assume the product will be used, but too often,marketing
is either too slim or inefficient, leading to a low adoption.

Perform the necessary research to find who your con-
sumer really is. Who is the key influencer that can commu-
nicate the value of your API? It comes down to knowing
the needs of this audience, and this requires thorough
analysis before development should begin.

Understandig Your Target API Consumer 29

Next Steps:
The excitement surrounding APIs should not
discourage critical examination into a smart
and applicable strategy for your organization.
Whatever the chosen API strategy is, it’s mis-
sion statement, usage projections, model for
growth, marketing strategy, and estimated
financial return should be clearly laid out be-
fore production begins.

Large organizations may find the creation of
a whole department necessary to respond to
new customer concerns from an entirely new
API-consumer base. Therefore, within the
Analysis Stage, you must allocate resources
for development, and anticipate creating sup-
port lines for marketing, hosting, customer
support, andmaintenance. If you’ve done the
necessary preparation, it’s time to move to
the Development Stage.

1. Analysis Stage
2. Development Stage
3. Operations Stage
4. Retirement Stage

http://nordicapis.com/achieve-accelerated-growth-apis/
http://nordicapis.com/achieve-accelerated-growth-apis/
http://nordicapis.com/5-ways-apis-will-increase-revenue/

II Development Stage

Arguably the most important action in the API lifecycle
phase is implementing the API and bringing it to life. Read
on to learn more about this process and to understand
what factors contribute to choosing the best combination
of standards, designs, and programming languages for
your API.

4. Constructing Your API
This chapter covers the actions to take as well as themost
important challenges to address during an API’sDevelop-
ment phase. We’ll consider what implementation options
are available and explore API Management and why it
matters. We’ll define API Usability and why it’s important,
and we’ll consider what immediate steps to take after
your API is deployed.

4.1 Things to Consider During
Implementation

At this point you should have a well-defined API business
strategy and documentation. This includes defining who
your main API stakeholders are going to be, and deciding
how the API will be consumed. By this point you should
have answers to the following questions:

• What value is the API providing? Is it a means to
distribute data or does it offer specific functionality
that can be used to build apps?

• Who will consume the API? Are consumers inter-
acting with your API to get access to data or are they
consuming it on behalf of other users?

• How many consumers will the API have? Is it a
private API consumed internally or is it going to be
available to potentially millions of consumers?

31

http://nordicapis.com/why-api-developer-experience-matters-more-than-ever/
http://nordicapis.com/api-lifecycle-analysis-stage-preparing-your-api-strategy-pre-launch/
http://nordicapis.com/api-lifecycle-analysis-stage-preparing-your-api-strategy-pre-launch/

Constructing Your API 32

Answering these questions will help you cut corners dur-
ing the implementation process. Let’s start with under-
standing what you are trying to enable with your API so
that you can define which methods and protocols you’re
going to use.

Methods and Protocols

The best way to define methods and endpoints for your
API is to follow the functionality you’d like to provide and
choose the most appropriate standards and protocols.
Identify what type of data manipulation your main API
consumers usually have available.

If your main consumers are mobile apps, consider of-
fering endpoints that ask for and respond with as little
information as possible. This is to prevent large band-
width consumption and speed up operations that involve
calls to your API. If, by contrast, you’re offering an API
that will mostly be consumed by the financial market,
carefully study what frameworks they’re using and how
they communicate with external APIs.

Whatever you do, we recommend not to follow the very
latest trends presented as “the future.” Trends can and
will change many times before they stabilize and become
widely adopted, and your APIwill have to keepupwith this
market fluctuation. Determine what 80% of your target
audience is using and offer that.

SDK Programming Languages

Choosing how you’ll offer access to your API is directly
related to how your API will be consumed.Will it mainly be
consumed by mobile app developers? Then offer ready-
to-usemobile SDKs. Brainstorming your potential API use

Constructing Your API 33

cases is the first step in choosing how your SDK will be
packaged.

If you’re not 100% sure about how your API will be used
you can always offer an SDK in several popular program-
ming languages. Algolia, a search engine API, is follow-
ing this approach by offering an easy way to use their
service in languages such as Ruby, Python, Node, PHP
or Objective-C. Be aware though that maintaining a large
number of SDKs is not an easy task as your API evolves
and methods change. APIMATIC and REST United are two
services that offer automatic SDK generation. With these
tools, whenever your API changes you can rerun the SDK
generation to make fresh code versions available to your
consumers.

4.2 API Management

After you implement your API endpoints and decide how
consumers will interact with your API, you must consider
ongoing operations. The most important factors are con-
trolling your API access conditions and determining how
to behave in usage peaks. You can follow a DIY approach
or use an API management service such as 3scale or
Apigee.

Whatever solution you choose, remember that you’ll be-
come tied to the way it works. Carefully define long term
objectives as well as common scenarios you want to
address. If you choose a solution that doesn’t offer what
most of your API consumers use, then you’ll likely be
forced to pivot in the long term.

https://www.algolia.com/
https://apimatic.io/
http://restunited.com/
http://www.3scale.net/
https://apigee.com/

Constructing Your API 34

Access Control

One of the most important aspects of API Management is
defining and automating the process of controlling who
can access your API and what measures are in place to
enable access limitation, if needed.

Most API Management platforms provide some sort of
access control features, including API call limit rating and
consumer differentiation with the help of different paid
plans. The very first access control feature to look for is
how your API will authenticate and authorize consumers.

There are several options depending on what kind of
consumers you’ll have and what kind of usage will occur:

• API keys: The most simple way to control access to
your API. Usually you’ll have to issue one API key for
each consumer and identification will be provided
through an HTTP header on each and every call.

• OAuth 2: Perhaps the most popular authorization
standard used by Web APIs. OAuth 2 lets you com-
bine token-based authentication with fine-grained
access control based on user scopes. This is the best
solution whenever API consumers are making calls
on behalf of other users.

• Origin IP address: This can be combined with other
access control methods or used on its own. Using it
alone is done in cases where you’re providing an API
to a very limited audience. To achieve better results
you should also add origin information to your logs
and usage analytics.

Whatever access control strategy you choose, always re-
member that it must accommodate your API’s most pop-
ular use cases. As an example, it doesn’t make sense to

http://nordicapis.com/building-a-secure-api/
http://nordicapis.com/building-a-secure-api/

Constructing Your API 35

use a simple API key based authentication if your main
API usage is through a mobile app. In this case it would
make sense to use OAuth and let the mobile app act on
behalf of its users.

4.3 Maintenance

While launching your API can be an exciting challenge,
keeping it up and running is often seen as something
boring. API maintenance is often delegated to a second
plan and only considered after things start to go wrong.
Don’t follow this path; implement a good maintenance
plan from the start.

The usual activities around maintaining your API are re-
lated to documentation, communication with consumers
and proactively understanding if something is not work-
ing as expected. As such, a big part of maintenance is
done by periodically testing your API to make sure that
everything is working as documented.

Testing

One way to proactively understand if your API is per-
forming according to the documentation you provide and
following your quality-of-service is to run periodic tests
against individual endpoints. With monitoring in place, if
any of the tests fail, you can hopefully fix the error before
your consumers experience problems. These types of
tests can be performed on your API:

• Performance-oriented: These are tests that make
individual calls to each and every method your API
provides. If a response takes longer than a specified

http://nordicapis.com/using-templates-for-documentation-driven-api-design/
http://nordicapis.com/api-design-testing-state-art/

Constructing Your API 36

time limit, it means that there’s a problem on that
specific endpoint.

• Functional testing: This type of testing works by
making singular calls to each API method to thor-
oughly test every API function, using different kinds
of payloads, or even sending data that will produce
errors. Responses are then compared to the ex-
pected behavior to locate errors.

• Use case testing: This is a more sophisticated type
of test and can be achieved by combining calls to dif-
ferent endpoints into a single test. Each test should
expect a specific response and execution time limit.

There are several tools that can help you run API tests
periodically in an automated fashion. POSTMAN, for ex-
ample, is a Chrome app that lets you run all the tests
mentioned above. There is also the SmartBear suite of
APImonitoring tools. If you’re looking for somethingmore
SaaSy you can try Runscope, a service that periodically
runs tests and reports on their results. Other helpful API
monitoring solutions include APImetrics and API Science.

Managing Changes

Even if everything is working as expected, sometimes
you’ll need to introduce changes to your API. When this
happens, consider the impact on your consumers and
internal systems by:

• Informing consumers about changes: Establish a
clear communication channel between you and de-
velopers using your API to inform them of changes
in a transparent fashion.

http://www.getpostman.com/
https://chrome.google.com/webstore/detail/postman-rest-client-packa/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
http://smartbear.com/product/alertsite-uxm/capabilities/monitor-apis/
https://www.runscope.com/
http://apimetrics.io/
https://www.apiscience.com/

Constructing Your API 37

• Keeping compatibilitywithprevious versions: En-
sure that any introduced change doesn’t break what
was already working. Remember that your API con-
sumers may not be able to update their systems
immediately.

• Minimizing downtime: Don’t bring systems to a
halt — even momentarily. Your build and deploy-
ment processes should guarantee that API changes
won’t affect API calls and functionalities. API down-
timemight create downtime or loss of quality on the
consumer side, so keep it to an absolute minimum.

Downtime can be minimized by following a Continuous
Integration approach and testing your code thoroughly
before deploying. Making sure that there are no break-
ing changes can be achieved by following a sound API
versioning strategy. If you offer and maintain different
versions of your API, consumerswon’t feel the changes on
the version they’re using. A helpful solution that bridges
the gap between API doc changes and the consumer is
the API Changelog, a tool that automatically discovers
changes to your API documentation and informs sub-
scribers.

http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Continuous_integration
https://www.apichangelog.com/

Constructing Your API 38

Check out our Winter Collection eBook as well - a collec-
tion of our best advice from the 2014-2015 winter season

5. 12 Design Tips

During the Nordic APIs World Tour, expert API practi-
tioners shared their insights with attendees at four in-
ternational cities, touching on API development, security,
design, operations, and more during intimate conference
settings.

A recurring theme in many talks was API Design. So, in
this chapter, we’ll sum up important API design lessons

39

http://nordicapis.com/tour/nordic-apis-world-tour-2015/

12 Design Tips 40

that were conveyed by our speakers and then add some
of our own — both practical tips on technical implemen-
tation, as well asmoremore philosophical considerations
on how to hide (or not hide) complexity when designing
an API.

1: Know Your API Require-
ments

API design should not begin with technical documenta-
tion, but should rather originate from your fundamental
goals. Knowing what your API needs to accomplish is of
the highest importance. This is defined in the analysis
phase of the API lifecycle.

As Phillipp Schöne from Axway pointed out, API designers
should ask “how APIs can support the business function and
not how they can support the needs of IT.”

2: Think of APIs as Building
Blocks

It’s important to remember the unique characteristics
of APIs. As a consumer, tying into a service’s underly-
ing data or functionality is inherently a unique process.
Though comparable to SaaS products, Andreas Krohn
from Dopter highlights two key differences:

The first is that APIs are building blocks and not finished
products: “If somebody is using your API they are basically
outsourcing a part of their business to you”.

His second lesson is thatmachines are not flexible. If a
SaaS product changes, a person can adapt, but if an API

http://nordicapis.com/api-lifecycle-analysis-stage-preparing-your-api-strategy-pre-launch/
http://nordicapis.com/api-lifecycle-analysis-stage-preparing-your-api-strategy-pre-launch/
https://www.axway.com/
https://twitter.com/andreaskrohn
http://dopter.se/

12 Design Tips 41

changes, a machine is not as adaptable. This influences
the design and the whole lifecycle of the API, and affects
how we prepare for parameter changes and versioning.

3: Learn From User Feedback

Theneed to understand your audience is applicable through-
out the entire lifecycle. If you are updating, versioning, or
performing major redesigns on an existing API, you need
to carefully respond to the feedback from your users to
make the new version as good as possible.

MarjukkaNiinioja, Senior Consultant andManager at Plan-
Mill shares her experience with leveraging user feedback
during a major redesign: developing PlanMill’s new REST-
ful API, UI, and back-end architecture.

PlanMill payed close attention to the feedback they were
receiving internally, noticing three main recurring points:

1. The API was too complex for the developers to use.
2. The documentation was not sufficient.
3. The error handling needed work.

Using this feedback, and by testing and consuming the
API themselves, the PlanMill team was able to hone in
on important aspects to consider during redeployment.
The takeaway is that if you are redesigning an API, you
are poised to release killer API improvements — as you
already have real world data on how API functionality
is used, which can be repurposed to improve efficiency
and overall API user experience.

http://nordicapis.com/speakers/marjukka-niinioja/
http://www.planmill.com/
http://www.planmill.com/
http://www.planmill.com/planmill-rest-api-1-5/
http://www.planmill.com/planmill-rest-api-1-5/

12 Design Tips 42

4: Decrease Confusion For
The User, Let Provider Han-
dle Complexity

Who pays the price for complexity? Nordic APIs veteran
Ronnie Mitra of API Academy argues that complexity is
necessary—what should be avoided instead is confusion.
Mitra contends “it is a designers job to reduce confusion and
embrace complexity in their business domain.”

There has been a move toward simpler products and
simpler interface designs. Mitra, an expert in developer
experience and API design, advocates for smartly de-
signed software and APIs that retain simplicity but also
cater to complex requirements. Quoting John Maeda’s
Laws of Simplicity, Mitra notes that “Simplicity is about
subtracting the obvious and adding the meaningful.”

A steering wheel in a F1 car is very complex compared
to the steering wheel of a normal car, “designed and

https://www.linkedin.com/in/ronniemitra
https://twitter.com/mitraman

12 Design Tips 43

optimised for its user and the situation”. Ronnie makes a
great point that “every design decision is a decision of if
you [as an API provider] or client app developers will pay
the price of complexity”. As an example, OAuth is complex
to implement by the service provider but easy to use by
the client developer. We cannot avoid complexity, but
we can architect our APIs so that the user-facing side is
deceptively simple.

Ross Garrett from Axway also talks about what applying
an API-first strategy means for enterprise organizations.
In dealing with legacy systems, he notes that a missmash
of tangled infrastructure can be masked by using proper
API management tactics.

“Your old architecture [may not have] useful
APIs, or may be older SOAP services that don’t
performwell in the context ofmobility or cloud
integration. Some legacy things need to re-
main, but API management can extend and
reuse by translating all old interfaces.” What’s
important is having a clean business appear-
ance for the end user.

5: Use Hypermedia For Evolv-
ability

It is impossible to talk about API design without men-
tioning Hypermedia, a subject that came up in several
presentations during the Nordic APIs World Tour 2015.
Pedro Felix of Lisbon Polytechnic Institute, offers a deep
dive intoHTTP. He summarizes his presentation about API
design this way:

https://twitter.com/gssor
http://nordicapis.com/tour/nordic-apis-world-tour-2015/
http://www.twitter.com/pmhsfelix
http://www.ipl.pt/en

12 Design Tips 44

“If you have a problem, keep calm and look for
an HTTP RFC”

Pedro considers hypermedia as the key factor for evolv-
ability, allowing API providers to react to new business re-
quirements quickly without breaking client applications.
Related to Mitra’s theory on the distribution of complex-
ity, using hypermedia means more initial complexity for
client app developers, but an overall reduced complexity
considering the ease of future changes.

6: Learn From Real World In-
formation Design

Brian Mulloy from Apigee demoes a hypermedia API for
the Internet of Things. By using hypermedia it is easy
to introduce new devices into the IoT since all possible
states, actions and feeds are described in the API itself.

https://www.ietf.org/rfc.html
http://nordicapis.com/html-hypermedia-apis-and-adaptive-web-design/
https://twitter.com/landlessness
http://apigee.com/
http://nordicapis.com/apis-power-the-internet-of-things/

12 Design Tips 45

Mulloy describes API design for the Internet of Things as
using information design for physical objects. He com-
pared this to the early days of mass car production in his
hometown Detroit. Suddenly the city had lots of cars, but
infrastructure was not prepared for a large automobile
influx. The resulting confusion lead to chaos and even a
large number of traffic related deaths.

The solution was to use information design that resulted
in standard designs used all over the world today. Pedes-
trian crossings, traffic lights, stop signs, and lane markers
make it clear how to behave in traffic. Akin to the early
days of cars, we are still working on how to organize and
design today’s APIs for the IoT.

7: API Design Needs To Con-
vince the Architect

Having a shared vision within an organization is key for
API interconnectivity to be accepted. To help convince API
naysayers, whether they be architects or engineers, in his
talk, Adam Duvander of Orchestrate walks through four
ways API providers can frame their API product to foster
confident adoption. These factors should be considered
when designing an API in order to respond to common
stigma associated with API integrations.

1. The architect wants control: Accustomed to tradi-
tional methods of infrastructure — data storage on
local servers — the architect may be opposed to
cloud operations, desiring to ‘touch’ the software.
To workaround this stigma, API providers can offer
the ability to download and store data sets locally,
or even offer an on premise, dedicated, managed
option the API.

http://nordicapis.com/apis-power-the-internet-of-things/
http://www.slideshare.net/duvander/the-architect-is-not-convinced
https://twitter.com/adamd
http://orchestrate.io/

12 Design Tips 46

2. The architect wants zero downtime: To foster reli-
ability in the service, having transparent developer-
facing logs that communicate API uptime is critical.

3. The architect wants to see responsibility: API sys-
tems need to be designed as secure systems using
modern approaches.

4. The architect requires an integration that guaran-
tees longevity

8: Develop With a Long-Term
Mindset

Within a “develop for now” approach, developers are
creating an API for immediate use, focusing entirely on
integrating existing feature sets and supporting specific
sets of queries. The downside of this approach, however,
is that they are only robust at what they are designed for,
and nothing more. Designing for the immediate needs
and requirements of a service or system is all well and
good, but it does little for long term support.

9: Be Consistent

Maintain consistency. If your API uses calls that don’t
run in the same environments, bug hunting becomes
a chore. If your documentation is inconsistent with ac-
tual functionally, you risk confusing and segmenting your
userbase. If you have a methodology to refer to outside
sources, use this methodology on every reference. If you
cover a request by another multipart request, make sure
there’s no needless redundancy.

http://nordicapis.com/how-to-control-user-identity-within-microservices/
http://nordicapis.com/building-a-secure-api/
http://blog.8thlight.com/craig-demyanovich/2011/10/03/inconsistent-apis.html
https://twittercommunity.com/t/rest-api-docs-inconsistent/31794

12 Design Tips 47

10: Allow for Manipulation of
Data

Data is only as valuable as it is understandable. When
users receive data from your API, consider the method-
ology of how it’s delivered. Delineate data by type, and
allow sortingwithin certain limitations. Powerful, dynamic
services that allow for far more usefulness of API data is
a common requirement amongst many developers.

11: Effectively Validate and
Report

Returning useless errors that state the obvious (some-
thing went wrong), the useless (ERROR), or the downright
confusing (error code:9442394) is a losing proposition
— if your users can’t find out what went wrong during
basic errors, they’ll stop using the API entirely. Similarly,
failing to return a valid JSON, and refusing to effectively
document what error codes actually mean can make a
potential API development partner second-guess integra-
tion with your services, further killing potential user base
growth. Make sure all error returns are understand-
able

12: Support Uptime

Uptime is our fifth and final tip as it is a wonderful metric
by which we can holistically judge an API. It represents
everything working in concert — if a single element of an
API is poorly managed, uptime will likely be influenced. At

http://www.computersciencezone.org/50-most-useful-apis-for-developers/

12 Design Tips 48

the time of this writing, Bit.ly reports 100% uptime over
the past 24 hours, with a yearly uptime rating of 99.9%.
Likewise, the Twitter API reports 100% uptime with an
average uptime of 99.9%. The proof, as they say, is in the
pudding (or in this case, the uptime).

5.1 Summarizing API Design Tips

Considering the development of your API is a serious
endeavor. The choices made now will impact your future
success in a big way. While these solutions can be imple-
mented after the fact, it is far easier to implement them
at the start of the development cycle. Not only will this
deliver a more completely integrated feature set, it will
also give you a product with simpler end-documentation
and user experience.

These 12 design and development concepts may be sim-
ple, but the implications of their applications are decep-
tively huge — implementing them can lead to explosive
growth, high user adoption, and long-term use statistics.
Design an API that allows an API provider to handle most
of the complexity, and simplify processes for your client
application developers. Above all, do not forget that the
API design should serve your overall business require-
ments.

http://status.bit.ly/
http://status.bit.ly/
http://blog.bitly.com/post/519223659/bit-ly-1-3
https://dev.twitter.com/overview/status
http://social.downornot.com/

12 Design Tips 49

Next Steps:
As you now understand, developing an API is
not limited to writing the code and making
it available. Understanding your API use case
plays a major role in building the founda-
tion of your offering. Maintaining proper API
healthmeans never leaving it unattended â€”
as you risk a decrease in consumer retention
and a damage to your brand.

This stage of the API lifecycle is so critical that
numerous services have been launched and
many startups created just to help companies
deal with all thatâ€™s involved. These tools
will help you understand what you have to do
next. If you are motivated to introduce major
changes to your API we recommend you visit
the Analysis Stage to treat those iterations
as a brand new API launch or version. Oth-
erwise, jump into the Operations Stage and
run your API like a product, fostering its user
base.

1. Analysis Stage
2. Development Stage
3. Operations Stage
4. Retirement Stage

http://nordicapis.com/api-lifecycle-analysis-stage-preparing-your-api-strategy-pre-launch/

III Operations Stage

In this part we discuss what factors make up the Opera-
tions Stage, and how they should be addressed. Trans-
forming your API into something developers will want
to consume, and learning what impact this will have on
your business are thingswe’ll consider at this stage. Other
critical actions involve maintaining a positive relationship
with your API audience and offering them appropriate
support channels.

6. Marketing Your API
To start, let’s take a look at your API from a different angle
— one that presents your API as not just a developer-
oriented tool but as a full product that solves a real
problem. In this chapter we’ll see how this angle can fine
tune the promotion of your API to focus more on your
audience’s perspective and needs.

6.1 Running Your API As a Product

Why should you treat your API as if it were a full-fledged
product? Isn’t the API something that’s supporting your
existing product? Though it may sound strange, running
an API as you would with any other product actually
makes a lot of sense.

By definition, a product is something that exists to satisfy
the needs of a group of consumers. Usually, during prod-
uct development, you research what consumers need so
that you can design your product accordingly. You also
conduct research to understand how consumers will use
the product that you’re designing. The results of these
activities will eventually lead to the creation of your new
product.

By applying the same strategy to your API, you’ll not only
have an API that developers reallywant to use, but you’ll
also fully understand your target audience—a vital aspect
of attracting developers to your API. The second activity
is not any less important, as it will greatly inform the API
design process. By learning how developers will consume

51

http://nordicapis.com/api-lifecycle-analysis-stage-preparing-your-api-strategy-pre-launch/

Marketing Your API 52

your API you’ll be able to adapt the following items, if
needed:

• Access Control: Are developers building applica-
tions that act on behalf of several users? Does it
make sense to use API Keys, OAuth or something
else?

• MethodsandProtocols: Dodevelopers prefer REST,
SOAP, Thrift, or something else? What makes more
sense from a consumer point of view?

• SDK Programming Languages: Are developers us-
ing Ruby, Python or other languages? What SDKs
should you offer and support?

• Asynchronous Operations: Is your API mostly con-
sumed by Web browsers, mobile devices, or back-
end code? Are API calls made from behind firewalls?
Can your API use webhooks?

http://nordicapis.com/api-lifecycle-development/

Marketing Your API 53

If you don’t conduct product-oriented research then you’ll
never understand how your API should be offered, and it
will be much harder to pivot or gain traction in the long
term. If you follow this strategy you’ll have the equivalent
of product/market fit: API/market fit. Next, you’ll want
to fuel your API usage growth by employing various mar-
keting tactics to attract more and more developers over
time.

Marketing Your API 54

6.2 Marketing Your API

Marketing an API is very similar in concept to any other
kind of marketing. You’ll want to produce material that
will promote your API in a variety of ways. This starts
with launching your developer portal, which will act as
the official point of contact between your API and its
consumers.

As your developer portal will be central to all your API-
related activities, it should offer an easy access to all the
following resources:

• API Documentation: Probably the most important
resource, documentation should always be up-to-
date and provide all information needed to quickly
begin consuming your API.

http://nordicapis.com/spark-api-adoption-good-documentation-practises/

Marketing Your API 55

• Application Registration: Offer an easy-to-follow
registration process that any developer can under-
stand. The output of this process should be an API
Key or a Client ID and Secret if you’re using OAuth.

• API Console: Developers usually want to test your
API without having to write any code. Either offer an
API Console or provide ready-to-use code that can
be copied and pasted. This first impression of API
functionality should be succinct and powerful.

• SDKs: After testing, your developers will want to
consume the API from within their existing appli-
cations. Offer the appropriate SDKs and follow the
packaging and installation standards for each pro-
gramming language. For example, if you’re offering
a Ruby SDK, offer it as a Ruby gem.

• Announcements: Keep your audience up-to-date
with anything you do related to your API. Announce
all upcoming API changes and other relevant activi-
ties.

• Use Cases: Provide comprehensive use cases that
your audience can identify with. Complement them
with sample code that uses your SDKs. It’s much
easier to understand how your API works by reading
a story than by going through the full reference.

• Support: Offer a simple support channel directly
from your developer portal. Whenever developers
have a question they should be able to contact your
support team from within the portal. Provide quick
feedback on support requests and always follow up.

• Links to External Resources: Link to external re-
sources that could help developers use your API.
Have your documentation link to the standards that
you’re following and provide relevant social media
links so developers can follow your announcements.

http://nordicapis.com/html-hypermedia-apis-and-adaptive-web-design/

Marketing Your API 56

If you implement all these suggestions you’ll have a su-
perior API Developer Portal, but you still have to attract
developers to it. Site activity should be combined with a
permanent instrumentation of your API and Developer
Portal usage so that you can correctly measure traction.

6.3 Using Different Traction Channels

In order to obtain the best possible results, fostering
your API user base should be done across a number of
different channels. Along the way you should measure
activity on each channel and adjust accordingly. As you’re
about to see,marketing channels have different costs and
you should understand howmuch, on average, each new
developer is costing you to acquire.

In the Product world, this value is often called Customer
Acquisition Cost or CAC, and can be used as a model to
determine if any of your channels should be abandoned.
To append this, you should also estimate the total future
revenue obtained from each new developer using your
API. The Customer Lifetime Value or CLTV is what de-
fines howmuch revenue, on average, each developer will
generate.

Marketing Your API 57

Tomake a profit, you should always aim for a CAC smaller
than the CLTV. Otherwise, you’ll end up paying more for
developers than the potential future revenue that you’ll
obtain from them. With this in mind, let’s look at some
possible traction channels.

Evangelizing Your API

Evangelizing is one of the methods used by most of the
popular APIs. Evangelizing is usually done by meeting
developer groups in person to share stories about how
your API can be used. So-called “API Evangelists” are used
to promote APIs using online media, and in person by
attending developer-oriented meetups, conferences, and
other related events.

Naturally, this type of promotion can have a cost range of
nearly nothing — especially if you’re doing it by yourself
online — but can be more costly if you employ a group of
dedicated evangelists to attend every possible developer
conference. Be pragmatic by starting small and measur-
ing your results along the way.

http://nordicapis.com/5-ways-apis-will-increase-revenue/

Marketing Your API 58

Hackathons, Events, Conferences

Another popular tractionmethod
is promoting your API is by
hosting a hackathon or de-
veloper oriented event. Hackathons
may be geared toward a spe-
cific industry or theme and are
often location-based — allow-
ing you to target specific demographics and discover and
promote new use cases that can be showcased on other
channels.

Integrations and Partnerships

An interesting way to gain traction is to attach your API
to the growth of other products and APIs. This can be
done by creating integrations that will make your API
easily available and consumable by developers who use
other products. Integrations often address specific use
cases, so carefully study which one will attract the largest
number of developers. Some integrations might be as
easy — such as writing the code and publishing a guide
— but in some cases you might need to engage into
partnership development.

Here, the cost will mostly be associated with software
development activities — but don’t forget that you’ll also
have tomaintain and support the integration after it goes
live.

6.4 Supporting Your API

Support always works better the closer you are to your
audience. Understand where your API consumers usually

Marketing Your API 59

ask for help and have a saying in those places. Don’t force
your developers to use specific tools and processes that
don’t make sense from their point view or you’ll start
to see them abandoning your API after an unsuccessful
usage.

A simple way to grow your support channel is to keep
things open. KeepingAPI-related activities as publicly trans-
parent as possible means your support team will spend
less time replying to the same requests.

Use GitHub

GitHub is considered themost popular developer-friendly
service andAPI providers should take it seriously. By using
their free plan you can create a repository to provide
an easy-to-use support channel. GitHub offers a way to
manage issues related with code changes and openly
interact with developers. An example company following
this approach is Spotify, who has been very open about
all their API-related issues through GitHub.

Other Developer-oriented Support Tools

Research your developer audience to understand which
other web services they use the most. It’s important to
have a presence on them aswell. Popular services include
Stack Overflow, specific subreddits, Twitter or Facebook.
Although social media isn’t specifically a support channel,
you can use it to quickly give feedback to any questions
developers might have about your API. Remember to
always be open and to provide helpful responses.

https://github.com/
https://github.com/spotify/web-api/issues
http://stackoverflow.com/
http://www.reddit.com/
https://twitter.com/
https://www.facebook.com/

7. The Importance of API
Metrics

Success and failure are relatively subjective terms—what
defines success for one business might be considered a
failure for another, and the relative of success in certain
areas of performance can change from industry to indus-
try, department to department, and even on a case to
case basis. This volatility in expectations, outcomes, and
impacts can make API documentation, implementation,
and support a difficult undertaking.

Luckily, those who work with APIs have a secret tool that
can make sense of the hectic world of performance eval-
uation — metric analysis. Proper use of metric analysis
can allow businesses to understand their consumers and

60

http://nordicapis.com/open-data-how-to-make-it-work-for-your-business/
http://nordicapis.com/open-data-how-to-make-it-work-for-your-business/

The Importance of API Metrics 61

aid in further development and implementation of user-
friendly and effective APIs.

In this piece, we’ll take a look at metric analysis to demon-
strate how it can be used to amplify success within the API
space. We’ll suggest types of metrics to analyze, demon-
strate a theoretical application of metric analysis, and
discuss two real-life examples of success and failure aris-
ing from differing metric analysis methodologies. By the
end of this piece, you should have a firm grasp on the
definition, application, and impact of proper API metric
analysis.

7.1 What Is Metric Analysis?

According to theOxfordDictionary,metrics are “method[s]
of measuring something, or the results obtained from
this”. Metrics are the way we measure the values of a
targeted part of a system, measuring an event from in-
ception to completion, including the effects caused by its
implementation.

So now that we know what a metric is, why is it so
important to APIs? Metrics, and by extension API-centric
Metric Analysis, are invaluable tools for the modern
business. Metrics can be used to develop new processes,
create a fundamental understanding of the product and
targeted consumer, drive a holistic understanding of your
manufacturing process andmethodology of delivery, and
create opportunity to monetize and optimize your API.
Using metrics can bring you to a bird’s-eye view of an
entire API process, following the age old saying — “you
can’t see the forest from the trees.”

http://www.oxforddictionaries.com/us/definition/american_english/metrics
http://www.oxforddictionaries.com/us/definition/american_english/metrics
http://www.oxforddictionaries.com/us/definition/american_english/metrics
http://nordicapis.com/how-to-monotize-your-api/

The Importance of API Metrics 62

7.2 Metric Analysis Tools and Services

There are many types of metrics that can be captured,
analysed, and used to develop more effective API sys-
tems. Metrics can largely be grouped into two categories:
internal metrics and external metrics.

Internal Metrics

Internal Metrics are those that are derived from data
captured by internal web servers, user feedback forms,
and trends observable through internal systems. These
include:

• User type: Is the consumer a repeat user or new
user?

• Days since last session: How long ago was the API
last used by repeat users?

• Traffic sources: Are functions within the API being
called through your own web application or a third
party application?

• Function grouping: How often a user calls a certain
function along with other functions.

• Types of data requested: Is your server serving
media requests, plain text requests, or other types
of requests more often than others?

• Access speeds: Howquickly is your system respond-
ing to requests? Where is the bottleneck?

• Service requests: How often are some services be-
ing requested? Are there any services that are never
requested?

• Error reporting: How often does a user report an
error with the system, andwhat is the specific error?

The Importance of API Metrics 63

External Metrics

These metrics are derived through the use of processes
and applications that originate outside of the API devel-
oper. While internal metrics are concernedmore with the
functioning of the actual API and overall system, external
metrics focus more on the community and potential user
bases. These metrics may involve third-party systems:

• API and service adoption rates - WebTrends
• Redirection and publicly facing data - Google Analyt-
ics

• Market trends and behaviors - Adobe

7.3 Example — The Tokyo Traffic
Problem

A
way to understand the importance of metric analysis is to
show a situation in which it is applied properly against a

http://www.webtrends.com
http://www.google.com/analytics
http://www.google.com/analytics
http://www.adobe.com/solutions/digital-analytics/marketing-reports-analytics.html

The Importance of API Metrics 64

situation where it is not, comparing the results of both
approaches. Let’s imagine that we are engineers for the
roadways of Tokyo, Japan, one of the largest cities in the
world. We are tasked with solving a congestion problem
in one of the most congested intersections in the entire
city.

Let’s first approach this problem without using Metric
Analysis. We will use an observational approach. By
standing on an overpass straddling the most congested
area of the road, we mark down our observations in
our notebook, noting both the number of cars and the
number of lanes provided. Using these observations, a
solution is designed to expand the roadway by an extra
two lanes. The time budgeted for construction is set on
a 24-hour schedule. You assume the congestion will ease
due to your solution, and you step away. Some months
later, the congestion you observed has only spilled into
the new roadways, worsening the problem. The obser-
vational approach has resulted in more problems than it
fixed, and is considered an abject failure.

Now let us approach the problem in a metric-based ap-
proach. After being assigned the project, you first look at
the city road maps. You observe that the congested road
is likely facing issues arising from a stoplight intersection
some miles ahead of the congested area; because the
highway empties into a city thoroughfare before con-
tinuing onto another highway, this area functions as a
“bottleneck”, increasing congestion by constraining the
throughput of the system as a whole. Using this data,
you decide to add a three-lane highway that bypasses
the city thoroughfare, allowing traffic to flow both into
and around the intersection, dependent on the driver’s
needs. You also decide to implement a roundabout as
opposed to a stoplight, thinking the flow of traffic should

The Importance of API Metrics 65

be eased in this manner. This plan is placed on a con-
struction schedule over a handful of weeks, avoidingwork
during the rush hour. After implementing this solution,
you collect data over an entire week, making notes of
points of failure or issues at certain times of the day.
Congestion has eased considerably, and themetric-based
solution is considered a success.

7.4 The Traffic Problem Solution

What was the difference between the two approaches?
Both aimed to ease congestion, and while the first ap-
proach was different than the second, on paper they both
should have worked. The difference is the fundamental
use of data in implementation.

• In the observational approach, the global issue of
congestion was attacked by a specific solution. In the
metric-based approach, the global issue of conges-
tion was attacked with a global solution.

• Issues arose within the first approach from fail-
ure to understand the end consumer (expanding the
intercity thoroughfare, and using a 24-hour build
schedule interfering with rush hour). The second
approach understood the requirements of the end
consumer, creating a highway bypass and avoiding
construction during the most congested periods of
the day.

• The observational approach eschewed data anal-
ysis, assuming a localized solution would fix the
problem, while the metric-based solution observed
the measurable results of the solution, tweaking and
adjusting to any new requirements that arose dur-
ing construction.

The Importance of API Metrics 66

7.5 The Traffic Problem and APIs

So what does Tokyo congestion issues have to do with
API development? The two approaches above are perfect
analogies for the development and implementation cycle
of APIs, and show the measurable need for Metric Anal-
ysis. When developing an API, one must monitor internal
and external metrics to ensure their API is effective in the
long-term. When an API is developed and implemented,
the following vital factors must be considered:

• The needs of the end-consumer, that is, the user who
will interact with the API and its front-facing systems

• The method and timescale of implementation, i.e.
whether or not the API will be implemented imme-
diately or over time

• The type of implementation, i.e. whether or not the
API is specific (defining a single use or purpose) or
global (completely overhauling the already existent
structures and systems)

• Themeasurable solution, or the effects caused by the
implementation of your API on your end-consumer

7.6 Metrics Throughout the Lifecycle

To better understand this concept, let’s break down the
API Lifecycle point by point, examining the role of metric
analysis in each stage.

In the first stage of the API Lifecycle, the Analysis Stage,
metric analysis is perhaps most effectively and exten-
sively used. While determining the usefulness of an API,
the demand for its implementation, and the decisions
between Private APIs, Partner APIs, and Public APIs (a

http://nordicapis.com/envisioning-the-entire-api-lifecycle/
http://nordicapis.com/developing-the-api-mindset-private-partner-and-public-apis/

The Importance of API Metrics 67

subject covered more fully in our eBook Developing the
API Mindset), the use of metric analysis is specifically
designed to help you understand your client base, their
needs, and the relative importance of ease of accessibil-
ity and extensibility. By analyzing market trends, review-
ing web server data, and polling prospective clients and
users, metrics can help effectively narrow and define the
objective of an API system.

During the second stage of the API Lifecycle, the Devel-
opment Stage, metric analysis switches from an external
role to an internal role. By analyzing the systems avail-
able to your developers, tracking the management and
implementation of features, and using varied methods
of rigorous testing and bug-tracking, quality is supported
and the product is refined into its best possible initial
state. Failure to perform proper analysis on the varied
metrics in this stage can result in massive hidden failures,
missing feature-sets, and an overall displeased user base.

Nearing the end of the API Lifecycle, the [Operations
Stage(#Operations) is nearly as heavy in metric analysis
as the first, as it is concerned with the public usage,
reception, and internal response through iteration and
patching. Monitoring user statistics, including the meth-
ods and durations of use, general feedback concerning
usability and extensibility, and the overall impression of
the API system can not only help you further refine your
product, build a confident, strong user base, and quickly
respond to bugs and issues, it can also help you prepare
for future development projects and make the first stage
of your next endeavor that much smoother.

Finally, the fourth stage of the API Lifecycle is the Retire-
ment Stage. This stage is often the direct result of effec-
tive analysis throughout the previous four stages. When

http://nordicapis.com/developing-the-api-mindset-private-partner-and-public-apis/
http://nordicapis.com/developing-the-api-mindset-private-partner-and-public-apis/
http://nordicapis.com/developing-the-api-mindset-private-partner-and-public-apis/

The Importance of API Metrics 68

retiring and deprecating APIs, metrics concerning usage
rates, operating system and browser support, financial
response, and user base confidence can all inform the
decision to retire, continue, or reiterate an API.

Failure to conduct API metric analysis could result in a
product undergoing an expensive and lengthy develop-
ment cycle only to find little demand upon release, mak-
ing the API financially impractical. Effective metric analy-
sis, however, can help create a stellar product, produced
quickly andwith less expense, resulting in higher demand
with a longer lifespan. This is the raw power of metric
analysis.

7.7 A Real-World Failure - Heartbleed

API security is a huge issue, and is becoming a more
prominent concern as more companies adopt the API-
centric design concept. One of the most well-known ex-
amples of security failure arising from poor metric anal-
ysis is the infamous Heartbleed bug. This bug, which
affected users implementing OpenSSL, a widely used se-
curity protocol, had a vulnerability in its data input val-
idation algorithm, which allowed for excess data in its
buffer overflow (a system meant to allow data exceeding
the maximum buffer size to “overflow” into a secondary
buffer registry) to be read in its entirety without being
validated or checked for malicious code. Due to this bug,
data could be forced through the overflow systemwithout
validation, executing commands that made internal data,
systems, and services vulnerable to external, malicious
attacks.

This bug is directly a result of improper metric analysis.
During the initial construction of the OpenSSL system and

http://nordicapis.com/why-you-should-build-apps-with-an-api-backend-baas/
http://nordicapis.com/why-you-should-build-apps-with-an-api-backend-baas/
http://en.wikipedia.org/wiki/Heartbleed

The Importance of API Metrics 69

API, “negative testing”, or the testing of failure scenarios,
was not properly conducted against the buffer overflow;
if it had been, the issue would likely have been found
early on and patched before it was abused. The needs
of a secure system for end-consumers was not properly
identified, as the vulnerabilities of the system itself were
not properly tested against common validation failure
andmalicious attack scenarios. By not acknowledging the
rate of buffer overflow incidents and the type of data
that failed validation during such scenarios in the metric
analysis process, an entire class of vulnerabilities was
essentially ignored until it was too late.

7.8 A Real-World Success - The FedEx
ShipAPI

When FedEx set out to develop an API for their shipping
and freight systems, they had one issue in mind — effi-
ciency. By eschewing the “established is better” mantra
and focusing on an agile mode of API and business de-
velopment, FedEx’s API, known as ShipAPI, is about as
impressive a success story as one could hope for.

At one time, FedExwas floodedwithwhat they call “WISMO”
(Where IS My Order?) calls — customers dealing with ex-
treme variations in ship times, inaccurate delivery dates,
and a lack of updates from FedEx to the customer. To rec-
tify this problem, FedEx analyzed the frequency of these
calls, the locations from which they were made, the types
of packages being sent, and the shipping services used.
Additionally, FedEx examined their own internal practices,
the rate of adherence to electronic scanning of barcodes
upon receipt at a FedEx facility, and the effectiveness of
their long-distance package tracking system.

http://nordicapis.com/what-makes-an-agile-api/
http://nordicapis.com/what-makes-an-agile-api/

The Importance of API Metrics 70

By identifying theweaknesses in their own system through
the use of internal metrics (utilizing both anecdotal met-
rics from users and operators as well as hard metrics
derived fromservers, scanning systems, and internal sort-
ing reports), FedEx was able to pinpoint their points of
failure, decreasing the time it took to deliver a product,
increasing customer satisfaction and confidence, and cre-
ating a channel of communication that could update the
customer faster and more accurately than any system
previously used by the customer. Almost overnight, the
FedEx brand became synonymous with quick, efficient
shipping, and that is greatly due to their effective devel-
opment and implementation of an API utilizing proper
metric analysis.

7.9 Security, Effectiveness, and
Commerce

Fundamentally, the process of metric analysis is not just
one focused on security. Commerce, effectiveness of so-
lutions, and more can all be determined through the
proper derivation, analysis, and application of solutions
deriving frommetrics. By determining your end-consumer,
their needs, the needs of your process, and the total result
of the application of an API, you can dramatically increase
revenue, security, and even your consumer-base.

The lesson of it all? Understand your consumer base.
Understand the API you are developing. And,most impor-
tantly,measure your success and learn fromyour failures.

The Importance of API Metrics 71

Next Steps:
By now you should know that in order to
grow your developer audience in a sustain-
able fashion, an API should be treated just
as if it were it’s own product. Your Oper-
ations activities will then consist mostly of
marketing your API by implementing the best
possible Developer Portal and by following a
combination of different traction channels.

TheOperations Stagewill inform you onwhat
exactly it takes to push your API into high-
growth mode. You’ll also discover market-
ing expenses related to developer attraction,
aiming to have that value bemuch lower than
your revenue — otherwise you won’t have a
business.

As you learn and your API experiences real
world consumption, you’ll likely have to refine
your offering. If you’re not obtaining the de-
sired traction, consider revisiting the Analysis
Stage to refine your business objectives. If,
during Operations, you find that there’s a
missing feature or change needed you should
revisit the Development Stage. Finally, if your
acquisition costs are so high that you can’t
possibly maintain a flow of incoming devel-
opers you should consider jumping to the
Retirement Stage of the API Lifecycle.

1. Analysis Stage
2. Development Stage
3. Operations Stage
4. Retirement Stage

IV Retirement Stage

Why would a web API be retired? what business factors
contribute to this decision? In this part we examine the
Retirement Stage of the API lifecycle, taking an in-depth
look at example API deprecations to attempt to answer
these tough questions and examining how to successfully
retire your API while saving face with your developer
community.

8. A History of Major Public
API Retirements

Old age comes, and retirement is a part of life. It’s no
different in the API world. The retirement of the Netflix,
Google Earth, LinkedIn, and ESPN APIs are examples of
some recent large public API deprecations. Every major
API retirement tends to spawnworrywithin the developer
community; are public APIs doomed?

We don’t think so — don’t forget there’s currently an
estimated 13,000 web APIs in operation, and the sector
has shown exponential growth and is slated to increase
with the IoT (which isn’t just a fad). However, all things
come to an end. As conditions change, technologies must
evolve tomeet newmarket conditions. A public-facing API
may prove successful for some organizations, whereas
for others, open environments may not be viable and
lucrative.

8.1 What Does Retirement Mean?

Retirement canmeanmany things. An API versionmay be
scheduled for complete deprecation, or the API could still
exist in a limited format with increased access controls.
An API may simply slim down it’s excess functionality to
become more consolidated and lean, or be fully replaced
by an internal technology or outside competitor.

In order to fully understand the conditions that beckon
major API changes, we’ll lay out 5 common causes that

73

http://apievangelist.com/2013/03/12/netflix-api-is-much-more-than-a-public-api/
https://developers.google.com/earth/
http://developer.espn.com/blog/read/publicretirement
https://www.linkedin.com/pulse/20140905122647-2464386-are-public-apis-going-away
http://www.programmableweb.com/api-research
http://www.forbes.com/sites/groupthink/2014/10/16/the-internet-of-things-isnt-a-technology-fad/

A History of Major Public API Retirements 74

beckon API retirements. Using large API deprecations
from recent years as examples, we’ll explore the reason-
ing behind each one that we’ve been able to surmise
through our research. Sound fun? We think it’s pretty
fascinating what can be learned from hindsight…

8.2 Retirement Reason #1: Lack of 3rd
Party Developer Innovation

A common scenario that may cause an API shutdown
is if the API is receiving limited or unsolicited use by
developers and end users. Though this could be due to
inadequate marketing, it could also be proof that the API
is not offering a true value to it’s consumers.

Netflix

Netflix proudly unleashed their API program in 2009,
citing the possibilities for newapp creations by third-party
developers. Eventually they stopped issuing new API keys
to developers, and by 2014 this was shut down to all
users aside from select partner integrations. According to
Daniel Jacobson, Director of Engineering at Netflix, their
reasoning was “to better focus our efforts and to align
them with the needs of our global member base.”

In the end, all of Netflix’s public API requests equated to
about one day of private API requests. The user base for
the public API was too miniscule to warrant it’s existence.

The result was to eliminate their Public API program to
embrace a single private/partner Java API. Nowadays, ev-
ery Netflix app on any device taps into the Netflix private
API, which performs data gathering, data formatting, and

https://gigaom.com/2014/11/14/netflix-is-shutting-down-its-public-api-today/
https://gigaom.com/2014/11/14/netflix-is-shutting-down-its-public-api-today/
http://www.slideshare.net/danieljacobson/top-10-lessons-learned-from-the-netflix-api-oscon-2014

A History of Major Public API Retirements 75

data delivery for all consumers. Netflix has also elimi-
nated versioning within their API to embrace imperma-
nence and constant change.

We learn from this case that when a brand name and
native platform is so powerful, creating an ecosystem
with a public perhaps not necessary. Also, according to
technologist Andy Thurai, it “becomes very expensive and
time-consuming tomaintain” both a Public and a Private/-
Partner API.

8.3 Retirement Reason #2: Opposing
Financial Incentive, Competition

A Public API may be retired if the interface interferes
with primary business objectives. In exposing their data
for anyone to consume, providers run the risk of losing
a market advantage, especially if this is taking business
away from native distribution channels.

ESPN

In the case of ESPN, their reasoning to retire their sports
data platform was “to better align engineering resources
with the growing demand to develop core ESPN prod-
ucts on our API platform.” Today, if you visit the ESPN
Developer Center, you’ll notice that all APIs are open for
“strategic partners” like IFTT, Pulse, and foursquare.

Discussion on Hacker News suggested that it was be-
cause developers were monetizing their apps. Andy Thu-
rai agrees, positing that “the actual reason seems to be
that they want better control over their unique and li-
censed content, and better monetization, which public
APIs may not offer.” We learn that by exposing internal

https://www.linkedin.com/pulse/20140905122647-2464386-are-public-apis-going-away
http://developer.espn.com/docs
http://developer.espn.com/docs
https://news.ycombinator.com/item?id=8149477
https://www.linkedin.com/pulse/20140905122647-2464386-are-public-apis-going-away
https://www.linkedin.com/pulse/20140905122647-2464386-are-public-apis-going-away

A History of Major Public API Retirements 76

assets, a business may risk losing an advantage if doing
so decreases traffic from native distribution channels.

Strava

Strava offers fitness software for wearables with a devel-
oper API to extend their applications. Starting with Strava
API v3, they began to curate their developer consumers
with a limited access program. These new requirements
prohibit “applications that encourage competition” aswell
as ones that “[Replicate] Strava functionality.” A large
API retirement can occur when developer consumers are
incorporating monetization techniques into third-party
apps that break the original terms of agreement.

8.4 Retirement Reason #3: Changes in
Technology & Consolidating Internal
Services

The tech sphere is constantly evolving. As such, advance-
ments in these technologies have the potential to make
an API obsolete. This happens often during internal re-
designs, acquisitions, or external industry advancements.
API retirement could arise from evolving protocol trends,
such as replacing SOAP with REST, or changes in end user
experiences, such as Netflix shiting it’s primary business
model from DVD distribution to video streaming.

Skype

Skype’s reason to decommission their Desktop API was,
according to them, that it didn’t support new mobile de-
velopment trends. The Skype Public API, first introduced

http://www.strava.com/
http://engineering.strava.com/update-on-the-api-v3-release-and-v1-v2-retirement/
http://andyabramson.blogs.com/voipwatch/2004/11/skype_api_now_o.html

A History of Major Public API Retirements 77

in 2004, was taken over by Microsoft in the 2011 aquisi-
tion. The Microsoft-owned Skype Desktop API was shut
down in order to embrace Skype URIs and the Microsoft
client. The termination irritated some developers as it
erased income for third-party applications consuming the
API as well as lessened functionality through the Skype
URIs.

Google Maps Data API

At the same rate Google releases new APIs, it also dep-
recates older versions. In 2010 Google announced they
would discontinue the Google Maps Data API, a service
made to store geospatial data. The main reason was that
a superior feature was launched with v3 of the Google
Maps API, offering an improved method of query and
storage that made the Google Maps Data API obsolete.

Other Google APIs scheduled for deprecation due to out-
dated technology:

• Google Webmaster Tools
• Google SOAP Search API

Fedex

At the time of this writing, Fedex is in the process of
updating its APIs to Fedex Web Services, replacing XML-
based tracking applications with a large redesign.

8.5 Retirement Reason #4: Versioning

Versioning is by far most common reason to retire an
API. Since APIs are a relatively new technology for most

http://andyabramson.blogs.com/voipwatch/2004/11/skype_api_now_o.html
http://andyabramson.blogs.com/voipwatch/2004/11/skype_api_now_o.html
https://aragonresearch.com/microsoft-kills-skype-desktop-apis-leaves-developers-scrambling/
https://msdn.microsoft.com/en-us/library/office/dn745882.aspx
https://msdn.microsoft.com/en-us/library/office/dn745882.aspx
https://developers.google.com/maps/documentation/?csw=1
https://developers.google.com/maps/documentation/?csw=1
http://maps-data-liberation.appspot.com/
http://googlewebmastercentral.blogspot.in/2015/03/deprecation-of-old-webmaster-tools-api.html
http://googlecode.blogspot.com/2009/08/well-earned-retirement-for-soap-search.html
http://images.fedex.com/us/developer/downloads/FXF_Automation_XML_Tracking_change.pdf

A History of Major Public API Retirements 78

businesses, you’ll often see v1, v2, or v3, still in use today.
Similar to OS upgrades on devices, it’s often easier to
scrape and replace an entire version when instigating
large change. Versioning can arise when major edits to
the API parameters or new usage controls are required.

Some alarming changes that dramatically affect develop-
ers and end users may be quietly hidden within new API
version documentation. Functionalities may be erased,
permissions limited, classes altered, etc. As versioning is
a common component to many API’s lifecycles, we don’t
intend to create an exhaustive list of them all. Rather,
these two examples of version updates came with them
a few surprises for developers and end users…

YouTube

YouTube, in the process ofmigrating to the YouTube Data
API v3, surprised users when it was found that Data v3
would no longer support the YouTube app on expensive
Smart TVs.

Twitter v1

Twitter’s v1 was finally retired in 2013. Being the 3rdmost
popular API in use today, the announcement sparked
worry throughout the developer community that sim-
plistic integration was a thing of the past. The update
added OAuth, requiring client keys and the creation of
an app with Twitter. According to MathewMombra, these
changes were likely instigated to:

• enforce call rate limiting with less liberal access
• reduce their system load
• decrease API vulnerability
• promote their embeddable tweet program

http://www.programmableweb.com/news/most-popular-apis-least-one-will-surprise-you/2014/01/23
http://www.programmableweb.com/news/most-popular-apis-least-one-will-surprise-you/2014/01/23
http://www.itworld.com/article/2712336/unified-communications/the-death-of-the-twitter-api-or-a-new-beginning-.html
http://www.itworld.com/article/2712336/unified-communications/the-death-of-the-twitter-api-or-a-new-beginning-.html
https://twitter.com/mombrea

A History of Major Public API Retirements 79

8.6 Retirement Reason #5: Security
Concern

A consideration ofmany large-scale retirements, API providers
may choose to discontinue a public API specifically be-
cause of the security concerns associated with making
internal data and processes public.

Google Earth API

The API was shutdown because it relied on NPAPI Frame-
work, an outdated technology Google mentioned had
become a security concern.

SnapChat

Though SnapChat never technically has released a public
API, the popular app has spawned a variety of mashups
on various platforms that all tap into their “private” API.
This went unchecked, until early 2015 when SnapChat
partneredwith theWindows store to crack down on these
rogue applications.

http://en.wikipedia.org/wiki/NPAPI
http://en.wikipedia.org/wiki/NPAPI

9. Preparing For a
Deprecation

Entire software ecosystems can quickly emerge that de-
pend upon APIs to survive. And just as quickly, they can
be destroyed. As these third-party developers have de-
pended on your service to support their own products,
complete shutdowns can inherently cause very negative
reactions. This is why any change to your API requires
the proper preparation and communication, whether it
be small edits, versioning, or complete deprecation.

80

Preparing For a Deprecation 81

9.1 Rippling Effects

Though most clients are quick to adapt, some may be
unaware of API changes. This means they won’t respond
quickly to update their system to be compatible with
new versions. Stagnancy, freezed dependencies, forgot-
ten forks, and inactive projects can be common with APIs
that have been active for a while.

Mircea F. Lungu, a computer science researcher at Bern in
Switzerland, found that when deprecating APImethods or
classes, the total adaptation time within an ecosystem
can vary tremendously. The amount of time between the
first reaction and the last reaction can bemonths, or even
years.

In his study on the case of the SmallTalk ecosystem of
2,000 consumers, Lungu found that 14% of deprecated
methods inducednegative rippling effectswithin the ecosys-
tem, and 7% of deprecated classes triggered ripple ef-
fects. Only 16% of deprecations had a systematic replace-
ment, which meant that most edits were done manually.
Thus, any changes to an API induces ripples that can have
far-reaching results.

9.2 Preparing For Developer Reaction

In order to keep good face with your community, we rec-
ommended transparency using the following techniques
to prepare for an API’s retirement.

• Schedule a retirement plan: Offer at least a 6
month time frame for complete deprecation. This
will hopefully give teams sufficient time to seek new
integrations or partnerships. Consider extending this

http://www.slideshare.net/mircea.lungu/how-do-developers-react-to-api-deprecation-the-case-of-a-smalltalk-ecosystem
http://www.slideshare.net/mircea.lungu/how-do-developers-react-to-api-deprecation-the-case-of-a-smalltalk-ecosystem

Preparing For a Deprecation 82

time frame if certain teams are struggling. Google
Maps and Youtube follow a one year announcement
to deprecation policy.

• Make changes in stages: Tier your retirement plan
in a way that aligns with past promises for support
and versioning. If still running, shut down older ver-
sions that receive limited use earlier in the process.
Twitter has created handy retirement timelines in
the past that display when each version will be re-
tired.

• Public announcements:Write and promote a blog
post that explicitly outlines API changes, when they
will go into effect, whowill be effected, and any other
vital information your community needs to know.
Disseminate this information to your dedicated de-
veloper social accounts.

• Ease the transition: If your API is being consoli-
dated, versioned, or merged into a separate service,
ease the process with a migration guide and FAQ.
For example, when Google Maps Data transferred
over to Google Maps, they created a Maps Data Lib-
eration Tool to offer a complete download of data or
transfer to their new console. Awkward transitions
can especially be a headache during acquisitions.

• Use blackout testing: Blackout testing is a planned
shutdown of all API functions for a short window of
time. This is helpful for developers to see how the
absence of the API is going to affect their systems,
and also acts as a call to action for developers to
update their code. The Youtube API, Twitter API,
Mendely API, and many others have used blackout
testing in the past.

• Don’t violate your own terms of service: Review
your Terms of Service to ensure that you have no

https://developers.google.com/maps/terms
https://developers.google.com/maps/terms
https://developers.google.com/youtube/terms#deprecation
http://maps-data-liberation.appspot.com/
http://maps-data-liberation.appspot.com/
http://www.adweek.com/socialtimes/twitter-scheduling-blackout-tests/477207
http://blog.mendeley.com/developer-resources/mendeley-api-blackout-testing/

Preparing For a Deprecation 83

binding contracts for continuing support before you
pull the plug. A smart way to plan ahead is to write
a deprecation policy whenever a new API version is
created.

Preparing For a Deprecation 84

Next Steps:
We’ve highlighted the major concerns that
would usher a large-scale API deprecation,
but many retirements occur for a combina-
tion of many these reasons. Other reasons
to consider large-scale API depreciation or
redesign may include:

• Overwhelming competition with other
APIs in niche sector

• Inability to structure data to be re-
ceived effectively

• Not generating a revenue to support
operations with current offering

• and many others

Scheduling the retirement of an API version
may be a great advance toward restructur-
ing how your data will be received by your
consumers. In this case, revisit the Analysis
Stage to consider your primary business ob-
jectives.

1. Analysis Stage
2. Development Stage
3. Operations Stage
4. Retirement Stage

V The Agile Mindset

Each phase of the API Lifecycle should not be considered
static. Progression is often non-linear, meaning informa-
tion garnered in a phase should simultaneously affect
other ends. Iterative communication between stages is
critical for influencing smart progression and arriving at
a sustainable internal ecosystem.

For example, if you receive multiple feedback complaints
from customers not satisfied with a certain operation,
alterations should be induced that only effect Develop-

86

ment, but inform Analysis, and perhaps even Retire-
ment.

Now that your API has
travelled through all stages
of it’s life, it may be en-
tirely changed, or might
have kept most of it’s
original form. Now that
we have a good grasp on
each stage, in this part
we consider what adopt-
ing an ‘agile’ mindset means for developing andmaintain-
ing an API, and offer helpful resources to expedite the
process.

10. What Makes an Agile
API?

Agile. API. API. Agile. It has a nice ring to it, but is it neces-
sarily so? Having become a buzzword, ‘agile’ often comes
loaded with misconceptions. At a Nordic APIs conference,
Christian Nilsson of Beepsend SMS messaging solutions
explores the concept of what it means to be truly agile in

87

What Makes an Agile API? 88

the context of APIs, offering 6 tips to help an API provider
determine what ‘agile’ really means for them.

10.1 What is Agile?

Agile can be defined as an approach to problems, a soft-
ware development process, and a business process. Like
it’s name literally suggests, agile is lean, nimble, and filled
with passion, with the ability to react to change rapidly.

To Nilsson, agile has three common themes:

1. Agile is breaking things down—but not to the point
that they break.

2. Agile means you can quickly shift business strategy.
3. Agile cannot be burdened by previous decisions.

Agile API Misconception #1: If You’re Not Agile,
You’re Not Successful.

In general, the closer a service is to the end consumer, the
more agile it needs to be in responding to problems. As
Nilsson says, “Internet users are fickle and promiscuous.
They’re curious. They’ll leave your service in a heartbeat.”

However, some businesses are naturally inflexible. When
these businesses increase their distance from the end
consumer, they become less agile and more stable. This
gives the business a stronger reputation for reliability,
which is a highlymarketable trait to less flexible industries
like banking.

Services should ask themselves: Why do we need this
API? What does ‘agile’ mean to us and our business
model? Is it right for us? Is it right for our customers? In

What Makes an Agile API? 89

the end, according to Nilsson, “you’re not automatically
successful just because you’re agile, you’re successful
because you’re passionate about your core model.”

Agile API Misconception #2: There is Only One
Perfect Software Development Process.

So often, project management tools are thrown at soft-
ware developers in order to make them work faster in
a more transparent environment. But software develop-
ment processes vary by needs, and corresponding tools
should support – not enforce – your software develop-
ment process.

Project managers for APIs should start by assessing the
size and makeup of their development team, along with
critically analyzing the problem the team is trying to solve
together. Considering these factors, the right strategies
for development will naturally arise, often straight from
group discussion on the topic.

Agile API Misconception #3: Your System Is
Secure.

Security doesn’t start and end with outsmarting hackers.
Nowadays, no matter how secure your system is, you are
constantly battling against an infinite number of scripts,
human errors and stealthy passwords. In this constantly
unstable and insecure world, one shouldn’t relax and
assume that all will remain stable.

Bugs such as Heartbleed roam the web, and system de-
pendencies can be altered at any time— such as re-
cent MySQL changes enforced by AWS. A way to over-
come these obstacles is through centralized configura-
tions, which make sure that keeping your systems up to

http://mashable.com/2014/04/10/heartbleed-programmer/

What Makes an Agile API? 90

date is not labor intensive. You must be vigilant for any
holes in the technology and to make sure that all devel-
opers are taking active steps to avoid cross-site scripting
(XSS flaws).

For an in-depth study on implementing API security check out:
API Security: Deep Dive into OAuth and OpenID Connect

Agile API Misconception #4: Your Extensive SLA
and EULA Will Save You.

Paypal includes 97 pages in their SLA. The reality of a
Service Level Agreement (SLA) or End-User License Agree-
ment (EULA) is that it is a best-case scenario. Some users
will inevitably use a service improperly. How often will
your team or the customer have the money and patience
to bring a side to court on a trivial matter? You may like
that your SLA or a EULA creates a sense of fear, but
Nilsson argues that API providers should bemore inviting
to consumers instead of scaring them away with lengthy
user agreements.

Agile API Misconception #5: Your API is ‘Special.’
Keep That Secret Sauce a Secret.

According to Nilsson, there are no secrets in coding any-
more. The “secret sauce” of a business truly lies within
execution. The secret sauce is how a you can adapt and
transform to fluctuating markets. It’s how you practice
agility. And it’s also how you provide fantastic customer
service.

“If your secret is that no one has figured out
what technology youuse, you’re screwed, you’re
doomed, you’re beyond saving. Your secret

http://en.wikipedia.org/wiki/Cross-site_scripting
http://nordicapis.com/api-security-oauth-openid-connect-depth/

What Makes an Agile API? 91

must be your staff, your DNA, your business
model, your ability to change…”

Technology is just one more conduit with which you can
support your employees and help them strive for great-
ness. Plus, if you keep your tech a secret, when things
go wrong, who will you be able to lean on? Communities
established around open code and collaboration can help
APIs dramatically increase in value; that’s what smart
cities all over the world are realizing by opening up their
data silos and API source code.

Agile API Misconception #6: NoSQL is the Future
That Will Power All APIs.

Nilsson argues that the NoSQL database for storing and
retrieving data just isn’t all it’s hyped up to be. He con-
cedes that NoSQL has the ability to solve many problems,
but argues that it cannot solve not all of them. Like with
all things in the programming and development world,
solutions need to be agile. Problems need to be critically
assessed and paired with the best solutions. Often times
this means pairing NoSQL in combination with other so-
lutions like a relational database.

10.2 Conclusion

API providers must incorporate creative combined solu-
tions for development that are tailored to their unique
position. When building an agile API, you must keep all
these facets in mind without falling victim to miscon-
ceptions of what it means to be agile. Following these
considerations, and the four stages outlined in previous
chapters, you should be prepared to react properly to

http://nordicapis.com/how-apis-are-driving-smart-cities/
http://nordicapis.com/how-apis-are-driving-smart-cities/

What Makes an Agile API? 92

your team’s needs, your business’s needs, and the end
consumer’s needs.

11. Case Study: PlanMill API

It’s true that APIs are accelerating normal B2B communi-
cations and ERP technologies, but masking a 10+ year old
system with a clean interface is no easy task.

Tuning into design lessons learned throughout research,
development, and implementation stages, in this post
we study a case that epitomizes the mullet in the back
philosophy. Read on to learn what processes created a
fully functional and partnership critical API as we study
the history of the PlanMill API. From simultaneous UI
development, Eating your own dog food, to reasoning
behind specific architecture decisions, Senior Consultant
&ManagerMarjukka Niinioja describes to Nordic APIs the

93

http://www.soatothecloud.com/2013/09/the-api-mullet-rest-in-front-soap-in.html
http://www.soatothecloud.com/2013/09/the-api-mullet-rest-in-front-soap-in.html
http://nordicapis.com/speakers/marjukka-niinioja/

Case Study: PlanMill API 94

nitty gritty details of developing an enterprise level API
from scratch.

11.1 What is an ERP?

PlanMill is an Enterprise Resource Planning (ERP) and
Customer RelationshipManagement (CRM) application
— a real time front and back end project management
platform for professional services. The PlanMill API ex-
poses the Planmill ERP platform, allowing for the com-
mercial exchange between various business applications
to expedite processes like accounting and CMS. Maybe
due to it’s sheer weight and business-oriented subject
matter, ERPs are often seen as pretty boring. According
to Niinioja:

APIs, on the other hand, are the wave of the future— they
are fast and nimble. So how can you combine the boring
and the agile?

11.2 The Slow Initial Release

The PlanMill API went through a painful birthing process
— a 12 month period of stress and test. Pretty early
to the game, the PlanMill API 1.0 was born in 2009. A
very quiet launch worked well, as it gave the team time
to create usable developer documentation, envision a
pricingmodel, speak with consultants, garner a potential
customer user base.

Eventually, some of the first real use cases occurred inter-
nally, with larger projects and time reporting integrations.
This was followed by a first big API use case within a larger
application, including massive improvements to the API.

http://www.planmill.com/planmill-rest-api-1-5/
http://nordicapis.com/what-is-the-future-of-the-api-space/
http://nordicapis.com/what-makes-an-agile-api/

Case Study: PlanMill API 95

The first partnership was eventuallymade possible (Atlas-
sian Confluence with Ambientia) using the PlanMill API.
According to Niinioja, the presence of an API became an
immediate selling point compared to competitors in the
ERP space.

11.3 API Usability Problems

So, what did the PlanMill team learn along the path to
version 1.0? Developer experience is a critical compo-
nent to your API strategy, and designing documentation
and API functionality in a way that mimics the user’s
desires is pertinent to success in the API space. Though
certain standards and API design guides do exist, actual
implementation is almost always unique. What PlanMill
did correctly was listen to their customer’s responses to
improve the overall experience to increase usability.

As the system originally intermingled much functionality
with a backend system that was 10+ years old, the follow-
ing usability concerns arose in the initial use of the API:

• Calls: “Why should this take 5 requests, can’t I con-
solidate into a single call?”

• Rate limits: Some users would send in 10 requests
per ms, crashing the system.

• Backend exposure: There was too much initial re-
liance on old JavaScript. Lesson learned is that not
all ideas are compatible from front and back end
perspectives.

• Documentation: Not every granular function was
initially documented.

• Error Messages: The users were receiving stack
traces as error messages in the API responses.

http://nordicapis.com/why-api-developer-experience-matters-more-than-ever/
http://nordicapis.com/what-is-the-future-of-the-api-space/
http://apievangelist.com/2015/07/21/as-the-api-design-space-grows-more-companies-are-publishing-their-api-design-guides-to-github/

Case Study: PlanMill API 96

• Response ID: The ID wasn’t in the response of what-
ever had just been created with the API.

11.4 Improved Process for API 2.0

For the API v 2.0, a new, improved process for devel-
opment was necessary. Gearing up for a new product
lifecycle, the PlanMill team performed impressive cus-
tomer research to dial into what their customers desired.
The PlanMill team stressed iterative changes bolstered
by continuous stages of modeling the product both in-
ternally and externally to receive feedback from the
developer community by demoing and attending API
related events.

1. Research Project: The team created a thesis-driven
formal research project to investigate the needs of
their customers, asking partners to share their own
experiences using the API and thoughts on how
to improve the API. They found, in general, that
customers were eager to share if it meant helping
to improve the system.

2. Pilot technologies and first service: Using the re-
search, the team brainstormed what could they do
differently if they could start from scratch. They
redesigned their technology stack, and masked old
things that weren’t a well designed to offer a clean
interface to their clients. Sleek front, mullet in back.

3. Demos:What followedwas internal discussion, knowl-
edge sharing, attending seminars, and demoing the
API.

4. Further Research: The team read Nordic APIs, re-
searched the community, tried new approaches, de-
cided on architecture and technologies, attended

http://nordicapis.com/api-lifecycle-operations-stage-marketing-your-api/
http://nordicapis.com/api-lifecycle-operations-stage-marketing-your-api/
http://nordicapis.com/how-to-understand-your-target-api-consumer/
http://nordicapis.com/how-to-provide-apis-with-an-existing-information-system/

Case Study: PlanMill API 97

additional seminars, and researched monetization
strategies.

5. Internal Beta : Operational version developed for
internal testing.

6. Ate own Dogfood w/ New UI: A new user interface
was designed simultaneously with backend devel-
opment. The team found that insights from a UX
perspective were critical for creating an intuitively
designed API.

7. Public Beta 1.5: This staged involveddeveloper com-
munity testing, and opening the API for third party
developers to use. They held a usage seminar, reached
a version 1.5, and made incremental updates.

8. Feedback from Developer Community: Currently
the team is at this stage.

9. Publish 2.0: Plans to publish full platform soon. The
team aims to use their research, feedback, new UI,
architecture decisions, monetization strategy, and
more to culminate in a well-informed and well-pre-
pared version 2.0 release.

11.5 Specific Architecture Decisions
Made Along the Way

Let’s take a peek under the hood. In response to their
research phase, the PlanMill team decided to go with the
following architecture choices:

Authentication: HMAC and API keys

PlanMill went with HMAC as an authentication scheme as
it allows Business-to-Business communication (B2B) via
system level integration capabilities. For PlanMill services,

https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
http://nordicapis.com/apis-are-evolving-the-b2b-landscape-2/

Case Study: PlanMill API 98

server-to-server file sharing is preferred for the transfer
of payrolls, for example. Though PlanMill acknowledges
they still need to improve their unified identity man-
agement process with additional technologies, HMAC is
adequate for their current situation involving one user
and one set of credentials to talk with another single user
and single set of credentials.

Data Format : JSON (and more) over XML

The PlanMill team chose slick JSON, a format that’s sim-
pler to understand and requires less configuration over-
head than XML. Some might scoff when they hear that
in addition to returning JSON, the PlanMill API produces
formats like CSV and… PDF. In their case, this return type
actuallymakes sense as certain business intelligence soft-
ware receives PDF or CSV formats for their operations.

HTTP Verbs Properly Used

The PlanMill API utilizes standard HTTP verbs (GET, POST,
PUT, DELETE). Though not implemented in PlanMill API
v1.5, Niinioja advocates the use of PATCH, for the rea-
son being that it can elleviate headaches and bloat that
can occur when trying to update delta records. Minute
changes in large datasets, such as a minor user info
edit, can be made heavyweight with redundant GET and
POST requests. The teamplans to embrace proper PATCH
standards with the 2.0 release.

RAML Documentation

PlanMill decided to go with RAML over Swagger, Blueprint
API, or other specification formats for REST APIs.

http://nordicapis.com/api-security-oauth-openid-connect-depth/
https://en.wikipedia.org/wiki/JSON
http://wiki.planmill.com/display/HELPEN/PlanMill+REST+API
https://www.mnot.net/blog/2012/09/05/patch
https://en.wikipedia.org/wiki/Delta_encoding
http://raml.org/
http://swagger.io/
https://apiblueprint.org/
https://apiblueprint.org/

Case Study: PlanMill API 99

PlanMill also leverages APImatic to generate SDKs in var-
ious languages.

REST or SOAP?

Is REST really better than SOAP? Is SOAP better for criti-
cal business transactions? There’s an argument for both
sides. For PlanMill, SOAP and WSDL have a place in their
platform for invoice, account, and payroll. However, as
Niinioja describes:

11.6 Sharing Data Carefully and Securely

It’s important to note that in the B2B environment some
critical level data or company secrets cannot escape the
system, but still must be shared via API across partner
channels.

Things like bank account numbers, sick leaves, payroll
data, etc, need to be shared with systems, but cannot es-
cape out of those boundaries. You also have government
and trade treaty control, such as in Finland, PlanMill’s
base, where personal data laws place strict confines on
what can legally be shared. Also a company may have an
internal policy controlling shared data. All this can inhibit
open integration with platforms like Zapier or IFTT.

In the end, Niinioja recognizes that a business needs to
support both opennness, for basic contact information or
other such data that can share freely, and point-to-point
routes, for sharing API data between partner systems
through secure connections.

https://apimatic.io/
http://nordicapis.com/rest-better-than-soap-yes-use-cases/
http://nordicapis.com/common-cases-when-using-soap-makes-sense/
http://scn.sap.com/docs/DOC-18456
http://nordicapis.com/fostering-an-internal-culture-of-security/
http://nordicapis.com/securing-your-datastream-with-p2p-encryption/
http://nordicapis.com/api-security-oauth-openid-connect-depth/

Case Study: PlanMill API 100

11.7 Understanding the Lifecycle of an
API

PlanMill understood the lifecycle of their API, bringing
an agile mindset to enterprise API platformitization. Each
stage in this process plays an important role in advanc-
ing the project as a whole. From analysis, development,
operations, and throughout versioning.

Though PlanMill still has their work cut out for them,
hopefully this case study can give insight into what mis-
takes were made early on in the process, and how they
were rectified, with the hopes that new API practitioners
can have a successful release armed with this knowledge.
We wish PlanMill a successful 2.0 release, and hope their
production saga can help as a model for others to have
similar success in the API space.

11.8 Additional Resources:

• PlanMill API v1.5 Documentation
• Accidental API Developer: Slideshow

[PlanMill has participated in Nordic APIs past events but did
not sponsor this post]

http://nordicapis.com/2-changes-that-will-transform-your-business-into-an-api-platform-for-growth/
http://wiki.planmill.com/display/HELPEN/PlanMill+REST+API
http://www.slideshare.net/MarjukkaNiinioja/accidental-api-developer-the-12-month-period-from-birth-to-toddler-and-beyond

12. Third Party Tools
So, you’re confident and ready to hit the ground running,
but still could use guidance in managing your API. Well,
we’ve assembled the following list of popular third-party
tools built to assist API providers - from documentation,
monitoring, to security solutions - that we’ve mentioned
throughout this e-book or otherwise recommend for use.
This list is not meant to be exhaustive at all, but rather is
a curated list of what services we are attracted to.

Documentation

Frameworks that ease the process of generating API doc-
umentation.

• Apiary
• API Blueprint
• Swagger

SDK Generation

• APIMATIC
• REST United

101

https://apiary.io/
https://apiblueprint.org/
http://swagger.io/
https://apimatic.io/
http://restunited.com/

Third Party Tools 102

API Management

• 3Scale
• Apigee
• Axway
• Mashery
• Mulesoft
• SmartBear

Performance Monitoring and
Testing

Services that allow a provider to monitor the activity and
status of their API or API dependencies.

• SmartBear
• API Changelog
• APIMetrics
• APIScience
• POSTMAN
• Runscope

Security

Services and tools to assist in embedding proper identity
control, access management, and more with authoriza-
tion, authentication, delegation, etc.

http://www.3scale.net/
https://apigee.com
https://www.axway.com/
http://www.mashery.com/
https://www.mulesoft.com
http://smartbear.com/product/ready-api/overview/
http://smartbear.com/product/ready-api/soapui-ng/features/functional-testing/
https://www.apichangelog.com/
http://apimetrics.io/
https://www.apiscience.com/
https://www.getpostman.com/
https://www.runscope.com/

Third Party Tools 103

• OAuth 2.0
• OpenID Connect
• Ping Identity
• Stormpath
• Twobo Technologies

Discoverability

API directory services, hubs, marketplaces, andmore that
assist in making your API discoverable by third party
developers:

• APIs.io
• Mashape
• ProgrammableWeb

Developer Support

In addition to using social media channels and internal
blog for updates, these developer-oriented channels can
be used to grow your audience:

• Certain sub-Reddits: API, Programming
• GitHub
• Stack Overflow

http://oauth.net/2/
http://openid.net/connect/
https://www.pingidentity.com
https://stormpath.com/
http://www.twobotechnologies.com/
http://apis.io/
https://www.mashape.com/
programmableweb.com
http://www.reddit.com/r/api/
http://www.reddit.com/r/programming
https://github.com/
http://stackoverflow.com/

Nordic APIs Resources

API Lifecycle Talks

In May 2015 Nordic APIs went on a World Tour in the
theme of the API lifecycle, visiting London, Copenhagen,
Munich, and Seattle. If you missed out, you can still watch
sessions here:

• Introducing The API Lifecycle, Andreas Krohn
• You Need An API For That Gadget, Brian Mulloy
• Pass On Access: User to User Data Sharing With
OAuth, Jacob Ideskog

• APIfying an ERP, Marjukka Niinioja
• Integrating API Security Into A Comprehensive Iden-
tity Platform

• A Simpler Time: Balancing Simplicity and Complex-
ity, Ronnie Mitra

• The Nuts and Bolts of API Security: Protecting Your
Data at All Times

104

https://www.youtube.com/watch?v=Hc-lDZALeXQ
https://www.youtube.com/watch?v=ogrHFkLIIAk
https://www.youtube.com/watch?v=CU5ptUHQeBo
https://www.youtube.com/watch?v=CU5ptUHQeBo
https://www.youtube.com/watch?v=ZyVGvMVBk6U
https://www.youtube.com/watch?v=dl0jD29XkK4
https://www.youtube.com/watch?v=dl0jD29XkK4
https://www.youtube.com/watch?v=mJnKXY2jj6E
https://www.youtube.com/watch?v=mJnKXY2jj6E
https://www.youtube.com/watch?v=tj03NRM6SP8
https://www.youtube.com/watch?v=tj03NRM6SP8

Nordic APIs Resources 105

More eBooks by Nordic APIs:

Securing the API Stronghold: The most comprehensive
freely available deep dive into the core tenants ofmodern
web API security, identity control, and access manage-
ment.

Developing The API Mindset: Distinguishes Public, Pri-
vate, and Partner API business strategies with use cases
from Nordic APIs events.

Nordic APIs Winter Collection: Our best 11 blog posts
published in the 2014 - 2015 winter season.

Nordic APIs Summer Collection: A handful of Nordic
APIs content offering best practice tips with a focus on
becoming an API platform.

Endnotes
Nordic APIs is an independent blog and this publica-
tion has not been authorized, sponsored, or otherwise
approved by any company mentioned in it. All trade-
marks, servicemarks, registered trademarks, and regis-
tered servicemarks are the property of their respective
owners.

• Select icons made by Freepik and are licensed by CC
BY 3.0

• Select images are copyright Twobo Technologies
and used by permission.

Nordic APIs AB Box 133 447 24 Vargarda, Sweden

Facebook | Twitter | Linkedin | Google+ | YouTube

Blog | Home | Newsletter | Contact

106

http://www.freepik.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.twobotechnologies.com/
http://facebook.com/nordicapis
http://twitter.com/nordicapis
https://www.linkedin.com/company/nordic-apis
https://plus.google.com/u/0/+Nordicapis/posts
https://www.youtube.com/user/nordicapis
http://nordicapis.com/blog/
http://nordicapis.com
http://nordicapis.com/newsletter/
mailto:info@nordicapis.com

	Table of Contents
	Preface
	Envisioning The Entire API Lifecycle
	#1: Analysis Stage
	#2: Development Stage
	#3: Operations Stage
	#4: Retirement Stage
	Choose Your Adventure:

	I Analysis Stage
	Preparing Your API Business Strategy
	Basic Things to Consider
	Determine If An API Is Right For Your Specific Situation
	Perform Market Research
	Align Your API With Business Objectives
	Select Your API Business Plan

	Monetization Models
	How Can You Measure If Your API Is Profitable?
	API Monetization Trick #1: Charge Directly for an API, by Call or Subscription
	API Monetization Trick #2: Using API Access As A Premium Upsell Opportunity
	API Monetization Trick #3: Drive Revenue-Generating Activities Through Your API
	API Monetization Trick #4: Increase Distribution Through Strategic Partners
	API Monetization Trick #5: Improve Operational Efficiency and Decrease Time to Market
	Mix, Match, Measure Models of API Monetization
	Your API Monetization Checklist

	Understandig Your Target API Consumer
	A Response to Increased Consumer Diversity
	Why Create a Developer “Persona”?
	The Developer Brain
	But Plenty of Other People Are Interested in APIs, Too!
	Expanding our Portal: End User Evangelism
	Varying Industry Backgrounds
	API Use Cases
	Lessen The Corporate Branding
	Developer Experience
	Build it And They Will _____

	II Development Stage
	Constructing Your API
	Things to Consider During Implementation
	API Management
	Maintenance

	12 Design Tips
	Summarizing API Design Tips

	III Operations Stage
	Marketing Your API
	Running Your API As a Product
	Marketing Your API
	Using Different Traction Channels
	Supporting Your API

	The Importance of API Metrics
	What Is Metric Analysis?
	Metric Analysis Tools and Services
	Example — The Tokyo Traffic Problem
	The Traffic Problem Solution
	The Traffic Problem and APIs
	Metrics Throughout the Lifecycle
	A Real-World Failure - Heartbleed
	A Real-World Success - The FedEx ShipAPI
	Security, Effectiveness, and Commerce

	IV Retirement Stage
	A History of Major Public API Retirements
	What Does Retirement Mean?
	Retirement Reason #1: Lack of 3rd Party Developer Innovation
	Retirement Reason #2: Opposing Financial Incentive, Competition
	Retirement Reason #3: Changes in Technology & Consolidating Internal Services
	Retirement Reason #4: Versioning
	Retirement Reason #5: Security Concern

	Preparing For a Deprecation
	Rippling Effects
	Preparing For Developer Reaction

	V The Agile Mindset
	What Makes an Agile API?
	What is Agile?
	Conclusion

	Case Study: PlanMill API
	What is an ERP?
	The Slow Initial Release
	API Usability Problems
	Improved Process for API 2.0
	Specific Architecture Decisions Made Along the Way
	Sharing Data Carefully and Securely
	Understanding the Lifecycle of an API
	Additional Resources:

	Third Party Tools

	Nordic APIs Resources
	Endnotes

