

API-Driven DevOps
Strategies for Continuous Deployment

Nordic APIs

This book is for sale at http://leanpub.com/api-driven-devops

This version was published on 2016-06-06

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2015 - 2016 Nordic APIs

http://leanpub.com/api-driven-devops
http://leanpub.com
http://leanpub.com/manifesto

Contents

Preface . i

Defining the Emerging Role of DevOps 1
What is DevOps? . 2
Why DevOps is Powerful 2
Implementing DevOps 3
DevOps Tools . 4
DevOps as a Career . 5
Analysis: Less Uptime Sacrificed for new Features . . . 7

10 Continuous Integration Tools to Spur API Development 9
Abao . 11
DHC . 11
Dredd, by Apiary . 11
APIMATIC . 12
Chakram . 12
Runscope . 13
SmartBear TestComplete Platform 14
Swagger Diff . 14
Analysis: CI is a Growing Presence in the API Economy 15

Reaching DevOps Zen: Tracking the Progress of Contin-
uous Integration . 16
Traditional CI . 17
CI in the cloud . 19
Mobile CI . 20

CONTENTS

Future of CI . 22
Analysis: CI is a Mainstay for Development 23

Introducing Docker Containers 24
What is Docker? . 25
Why Docker? . 27
Simple Docker Commands 30
Caveat Emptor . 32
Analysis: Use Docker in the Right Scenario 34

Digging into Docker Architecture 35
Virtual Containers . 36
Docker Architecture . 36
Who uses Docker? . 38
Where does Docker fit in the DevOps puzzle? 39
Up Next: Tooling Built on Docker Remote API 41

Tools Built on Top of the Docker API 43
Dogfooding . 44
Scheduling . 44
Cluster Management 45
Service Discovery . 45
Networking . 46
Storage . 46
Continuous Integration 47
Hosted Docker Registries 47
Log Aggregation . 48
Monitoring . 48
Configuration Management 48
Security Auditing . 49
PaaS . 49
Full-blown OS . 50
Analysis: Remote Docker API Demonstrates Automated

DevOps in Action 51

CONTENTS

Description-Agnostic API Development with API Trans-
former . 52
Where API Transformer Fits 53
Example Use Case . 55
Analysis: The Value of API Transformer 59

The Present and Future of Configuration Management . . 60
What is Configuration Management? 61
CM in the Cloud . 61
The Leaders: Puppet and Chef 62
The Contenders: Salt and Ansible 64
Cloud Vendor Solutions 65
In-House CM tools . 65
Analysis: The Road Ahead 67

Security for Continuous Delivery Environments 69
What Is Continuous Delivery? 69
Auditing Security . 71
Analysis: Continuous Delivery Requires Continuous Se-

curity . 75

API Testing: Using Virtualization for Advanced Mockups 77
What is Service Virtualization? 78
What is API Virtualization? 78
1: Test Failure in a Safe Environment 79
2: Increase Development Productivity 79
3. Isolated Performance Testing Saves Money 80
4. Reduce Time to Market 81
5. Virtualization Can be Usable 82
Safe Harbor: Drawbacks, Risks, and Mitigations 83
“Virtualize Me” -Your API 83
Analysis: Benefits in API Virtualization 84

Automated Testing for the Internet of Things 86
IoT and Testing . 87
What Makes IoT Applications Harder to Test 88

CONTENTS

Simulations, Quality Assurance and other Approaches . 89
New Frontiers . 91
Analysis . 94

Final Thoughts . 95

Endnotes . 98

Preface
There once was a time when software products were launched;
physically shipped in a CD-ROM to a storefront, purchased, and
then likely left to rust after the user’s initial installation.

Nowadays, nearly all code is shipped over the web, meaning
that continuous software updates are not only achievable, but
expected, whether for mobile, browser, or desktop user experiences.
Especially as the digital services we use embrace a subscription
billing format, the process of continually delivering many fine-
tuned iterations has become increasingly more strategic.

Thus, philosophies around this development style have proliferated
the industry in the past decade. DevOps embodies this shift. The
historical boundaries between development and operation teams
have ebbed, and as continuous deployment becomes the norm,
the tooling space has exploded to help startups and enterprise
developers alike embrace more automation, and more efficient
product cycles.

So, throughout early 2016 we admittedly followed some industry
trends and wrote a lot on DevOps and relevant tooling. In this
compendium we include curated lists of tools and analysis of
specific areas like:

• continuous integration/deployment
• Docker containers
• Automated testing
• configuration management
• IoT continuous integration
• DevOps as a corporate role
• Automated code generation

i

Preface ii

• and more…

So please enjoy API-Driven DevOps, and let us know how we can
improve. Be sure to join the Nordic APIs newsletter for updates, and
follow us for news on upcoming events.

Thank you for reading!

– Bill Doerrfeld, Editor in Chief, Nordic APIs

Connect with Nordic APIs:

Facebook | Twitter | Linkedin | Google+ | YouTube

Blog | Home | Newsletter | Contact

http://nordicapis.com/newsletter/
http://nordicapis.com/event-calendar/
http://facebook.com/nordicapis
http://twitter.com/nordicapis
https://www.linkedin.com/company/nordic-apis
https://plus.google.com/u/0/+Nordicapis/posts
https://www.youtube.com/user/nordicapis
http://nordicapis.com/blog/
http://nordicapis.com
http://nordicapis.com/newsletter/
mailto:info@nordicapis.com

Defining the Emerging Role
of DevOps

The nature of the IT industry is one of constantly emerging and
refining processes and trends. One of these trends that has taken the
IT world by storm is the emergence of DevOps. As more and more
groups adopt DevOps organizational strata, understanding this new
structure is key to keeping fresh and innovative.

A change to the very fundamental approach and organization of
IT groups and API developers, DevOps is a firestorm that can
empower and extend capability.

1

Defining the Emerging Role of DevOps 2

What is DevOps?

What exactly is DevOps? To understand what DevOps is, we first
must take a step backwards. The development world is largely
split into two groups - Development and Operations. Think of
Development and Operations as the Felix and Oscar odd couples
of the IT world — constantly fighting, at odds with one another,
but ultimately dependent on one another.

Traditionally, Development is concerned with one thing — devel-
opment. The continual innovation and experimentation resulting
in iteration on previous versions is what drives the development of
most applications and services. While this development process has
created a wealth of services and functionality, it is at odds with the
concept of “stability”.

That’s a problem, because that’s what Operations is all about. Oper-
ations is concerned with stability above all else — the maintenance
of systems and the stability of the forward facing application is the
prime goal.

While many API providers can unify these groups, the fact is
that the disconnect between purposes causes friction. This friction
results in some huge issues for API developers, and drives much of
the issues an API developer will face in the API lifecycle.

Why DevOps is Powerful

Enter DevOps. DevOps, a portmanteau of “Development” and
“Operations”, is a production philosophy that unifies the concept
of experimentation and iteration with a measure of control to
ensure stability. DevOps is incredibly powerful when implemented
correctly.

The biggest source of increased power is the fact that implementing
DevOps structuring makes an organization more agile. By tying in

http://nordicapis.com/api-ebooks/the-api-lifecycle/
http://nordicapis.com/what-makes-an-agile-api/

Defining the Emerging Role of DevOps 3

iterative development with stability testing, organizations can sur-
pass the time limitation often incurred between shipping versions
between development teams and testing teams.

This joining is often referred to as “IT alignment”, and its power
simply can’t be overstated. By properly aligning production and
development, versions can be tested against the actual produc-
tion environment, reducing the incidence of bugs and feature-set
failures. Fundamentally, this reduction of segregated development
procedures means greater results with less time and resources.

Implementing DevOps

The biggest change an API developer must make to support the
switch from traditional segregated development to DevOps is a
change to the fundamental development approach.

Development is commonly considered a process of “waterfall”
interactions — one team does their work, shifts it down to another
team, that teams does their work, and so on, culminating with the
testing of the finished product and ultimate acceptance or denial.

While this is great on paper for ensuring compatibility and func-
tionality, in actuality, all it does is put the development process
through a corporate version of the “telephone game”. Each tran-
sition from one team to another dulls the product, waters it down,
and ultimately removes it one more layer from the original vision
and purpose.

By changing the concept of development from “waterfall” to “point-
to-point”, developers can harness the power of collaborative work
in a more functional way.

When a feature is proposed, DevOps should treat it as a jour-
ney from inception to creation, and test it throughout develop-
ment. When a feature is completed and tested, it should be imple-

Defining the Emerging Role of DevOps 4

mented. Streamlining the process makes development more effec-
tive, quicker, and more efficient.

DevOps Tools

With increased power and responsibility, DevOps groups require
more powerful and extensive tools to carry out their job. Thank-
fully, with the emergence of DevOps as a concept, DevOps tools
have become more common. Throughout the course of this eBook
we will outline many relevant tools, but take the following exam-
ples.

One tool for DevOps in production is the ELK Stack. Combining
Elasticsearch, Logstash, and Kibana, the ELK Stack creates mean-
ingful information from data culled from consumers. By examining
usage demographics and behaviors, deploy issues can be identified,
possible issues can be extrapolated pre-deploy, and behavioral
trends and security issues can be determined.

Some tools, like Atlas, integrate DevOps as a process rather than a
state of being. Atlas integrates deployment with automated work-
flows, constrained by set policies. By controlling the nature of
deployment and tying it to the development cycle, Atlas allows for
a seamless transition from segregated development and operations
to the fabled DevOps.

A similar tool, Chef, utilizes “recipes” in place of policy-driven
workflow automation to rapidly and automatically deploy services.
Chef also has the added benefit of functioning in the open source
realm, and boasts a collection of thousands of user-made “recipe”
scripts, allowing for proven and rapid development regardless of
the enterprise scale and scope.

Not all tools have to focus on automation, either. In an upcoming
chapter we will discuss the power behind Docker, and this power is
no more evident than with DevOps teams. Docker allows developer

https://www.elastic.co/webinars/elk-stack-devops-environment
https://www.hashicorp.com/atlas.html
https://docs.chef.io/index.html

Defining the Emerging Role of DevOps 5

to segregate services into separate containers, and allows for the
quick “spinning up” of new environments for testing, development,
and isolation. By allowing for mutli-modal production environ-
ments and isolating testing from deployment, deploys can be more
thoroughly vetted throughout the streamlined process.

One of the biggest oversights in DevOps isn’t necessarily the
development cycle, however — it’s the development environment.
Even with powerful solutions like Docker, environments in pro-
duction and in development can differ wildly. This often results
in developers making changes to the base code that worked in
development to work in production. For developers moving into
DevOps, the environment must be unified.

Thankfully, there are just as many tools for exactly this purpose.
One of these is ScriptRock GuardRail, a powerful monitoring and
configuration system that checks the states of QA, production, and
development environments. By ensuring that these environments
are the same, DevOps can unify their functionality, and make their
development that much more efficient.

For managing these production resources, there’s yet another pow-
erful tool — Stackify. Stackify aggregates errors, tests database
queries and requests for speed and accuracy, and collates all of this
into easy to read metrics. This is a great tool for ensuring that your
production environment is as good as it can be, but is also great for
stamping out issues in QA environments as they arise. Having an
integrated solution such as this goes a long way towards making
the adoption of DevOps possible and painless.

DevOps as a Career

DevOps is a unique thing to consider in that it functions as both a
conceptual approach to development and as a specific talent. This
makes it a strange thing to consider, as the expectations of strategy

http://scriptrock.sys-con.com/
http://stackify.com/

Defining the Emerging Role of DevOps 6

is one of a suite of approaches or concepts, and the expectations of a
skillset is a single or unified group of skills — DevOps is the middle
ground, a group of strategies as an organizational approach unified
as a singular skillset, the joining of disparate approaches.

In other words, the combining of the “operations” skillset with the
“development” skillset is, in itself, a skill, as is thus a marketable
career. Accordingly, in the coming years, many professionals will
begin seeing the job title shift from “development management
with operational skillset” or “operations lead with development
experience” into “DevOps manager”.

Right now, however, this is somewhat nebulous, largely due to the
fact that there is no “unified approach” in the landscape. While
many organizations have adopted DevOps as a way of life with
little issue, others have rebuked the concept as unnecessary at best,
and bloat at worst. Some employers might find issue with oneself
branding themselves as a “DevOps leader”, while others would find
issue NOT branding oneself as such.

The landscape is changing. As more and more companies transition
to the DevOps approach, these issues with be far less common, and
DevOps will be adopted by many organizations. For now, however,
DevOps is best considered a “strategy development”, and less so a
career title.

Defining the Emerging Role of DevOps 7

Analysis: Less Uptime Sacrificed for new
Features

There’s a lot to be said for DevOps. While there will undoubtedly
be issues switching frommore traditional development cycles to the
DevOps world, the fact is that DevOps is incredibly powerful, and
is quickly becoming standard for enterprise businesses.

A speaker at DevOps Days put it best by saying:

In most organizations, Dev and Ops have misaligned
goals. Dev is measured by the number of new features.
Ops is measured by 100% uptime. Question: What’s the
best way to get 100% uptime? Answer: Don’t introduce
any new features or make any changes.

It is this chief issue that so many developers have experienced that
makes DevOps such a raging firestorm. Adoption now could help in
the long run, making your API and enterprise more agile, creative,

http://www.devopsdays.org/

Defining the Emerging Role of DevOps 8

and innovative. Not adopting it? Well, it could either have no effect
whatsoever, or leave you in the dust.

The choice is pretty clear.

10 Continuous Integration
Tools to Spur API
Development

Software development these days is about iterating fast, and releas-
ing often. In the 10 years since Martin Fowler wrote his original
paper, continuous integration has become a cornerstone of the
software development process. It is a fundamental part of Agile de-
velopment (being one of the core tenants of Extreme Programming)
and has helped to spawn organizational change with the creation
of the DevOps approach to application development.

Within the API community, continuous integration (CI) tools gen-
erally fall into two categories. The first wave of tooling saw the
role of APIs in CI as being one of a building block, with the CI

9

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.extremeprogramming.org/

10 Continuous Integration Tools to Spur API Development 10

servers available tending to reflect this. Solutions such as Jenkins,
TeamCity, Travis CI and Bamboo provide or consume APIs to
help drive the build process, allowing automated builds to invoke
actions during the course of execution: this role persists and is still
expanding.

The second category of tools help organizations implement CI for
the APIs they are creating: These tools can perform test execution
andmetric collection associatedwith running a CI process, allowing
organizations to introduce a greater degree of automation in their
approach to testing APIs.

In this post we’ll cover the latter of the two categories and look
at some examples of the tools available that help spur agile API
development. While it is possible to create tests for your API using
no more than shell script and cURL, this takes time and effort that
may not be available, so using tools built for the purpose of testing
APIs can be a great way of accelerating your efforts. At the time of
this writing there is a burgeoning number of both open source and
commercial solutions available that offer a mixture of SaaS-based
and on-premise solutions. Ideally these solutions implement some
of the following characteristics:

• Easy integration with CI servers using either plugins or
webhooks;

• Automatic comprehension of APIs through ingestion of de-
scription specifications such as Swagger, RAML and API
Blueprint;

• Polyglot support for test creation, giving users choice of the
language they use to construct their integration tests;

Please note that this isn’t intended to be a product review, rather a
list of “honorable mentions” for of the solutions in this space and
their features.

https://jenkins-ci.org/
https://www.jetbrains.com/teamcity/
https://travis-ci.com/
https://www.atlassian.com/software/bamboo
http://swagger.io/
http://raml.org/
https://apiblueprint.org/
https://apiblueprint.org/

10 Continuous Integration Tools to Spur API Development 11

Abao

Abao is a Node.js module that allows developers to test their RAML
API description against a backend instance of their API: To execute
the tests, a developer simply executes the abao command line tool,
passing the RAML file and API endpoint as parameters. Abao also
does not provide CI server integration of the box, but scripting
its execution from a build job definition would not be difficult to
achieve.

DHC

DHC is a tool offered by Restlet that allows developers to create
a suite of unit and functional tests for their own or any third-
party API and includes support for security, authentication and
hypermedia. It also includes the ability to perform scenario-based
testing, with each scenarios allowing multiple features of an API to
be tested.

In terms of CI server integration, Restlet offers a plugin for Jenkins
and also a Maven plugin that can be incorporated into other
solutions, allow developers to incorporate their tests into the build
pipeline.

Dredd, by Apiary

In 2015 Apiary introduced continuous integration features into their
development platform, enabling developments to continuously and
automatically test their APIs with test definitions generated from
their API Blueprint description. This functionality is implemented
with Dredd, a “language agnostic command-line tool for validat-
ing API documentation written in API Blueprint”. Developers use

https://github.com/cybertk/abao/
https://restlet.com/products/dhc/
https://apiary.io/
https://github.com/apiaryio/dredd

10 Continuous Integration Tools to Spur API Development 12

Dredd to execute their tests, with the results posted in the Apiary
development console.

Obviously, using Apiary and/or Dredd for continuous integration
necessitates the use of API Blueprint to describe the API. Apiary
also does not provide CI server integration out of the box, but again,
scripting the execution of Dredd from a build job definition would
not be difficult to achieve.

APIMATIC

APIMATIC is a solution that allows developers to automatically
generate SDKs from API descriptions, which can be imported from
existing API Blueprint, Swagger and RAML API descriptions. API-
MATIC provides the functionality to initiate the code generation
process from CI, by providing an API that can be called from a
build job definition, allowing the compiled SDK to keep step with
the state of the API automatically.

Chakram

Chakram is an API testing framework built on Node.js and Mocha.
It implements a behavior-driven development style of testing (al-
though it does not use Gherkin-style test definitions). Chakram
does not provide CI server integration of the box, but like the other
examples scripting it’s execution from a build job definition would
not be difficult.

Frisby.js

Frisby.js is a Node.js module for testing APIs, allowing developers
to create tests in JavaScript. Whilst Frisby does not have built-in

https://apimatic.io/
https://github.com/dareid/chakram
http://mochajs.org/
https://github.com/cucumber/cucumber/wiki/Gherkin
http://frisbyjs.com/

10 Continuous Integration Tools to Spur API Development 13

integration with CI servers, again it can be called from a script-
based build job definition using its command line interface. A no-
table feature that Frisby implements is the ability to generate JUnit
format test reports, compatible with several CI servers including
Jenkins and Bamboo, making it easier for test results to be displayed
and understood.

Postman

Postman is a well-known and popular API testing client, with
support for importing API descriptions in RAML, Swagger and
WADL formats. Developers can create tests using JavaScript that
can be bundled into “collections” for executing automated test
suites.

Postman is accompanied by its Newman command line client that
can be incorporated into a script-based build job definition on most
CI servers. Postman provides a walkthrough of implementing this
with Jenkins on their blog, where they use the built-in scripting
capability to call the client, passing the required Postman collection
as a parameter.

Runscope

Runscope markets itself as an API monitoring and testing tool
capable of being used throughout an organization’s development
lifecycle, with capabilities such automatic test generation from a
Swagger description or Postman collection.

Runscope appears to be one of the most mature tools in this space
with several features for CI. It can be easily plugged into a build
via a webhook, triggered at any point to initiate API testing, the
scope of which includes validation of the data returned in an API
response. Runscope also provides detailed information on how to

https://www.getpostman.com/
https://www.w3.org/Submission/wadl/
http://blog.getpostman.com/2015/09/03/how-to-write-powerful-automated-api-tests-with-postman-newman-and-jenkins/
https://www.runscope.com/
http://nordicapis.com/envisioning-the-entire-api-lifecycle/
http://nordicapis.com/api-design-testing-state-art/
https://www.runscope.com/docs/api-testing/integrations#third-party-services

10 Continuous Integration Tools to Spur API Development 14

configure the webhook, what they call the “Trigger URL” for a series
of CI servers and platforms. They also provide functionality that
helps users to analyze their results by providing integration to ana-
lytics platforms, allowing detailed digestion of test results. Finally,
Runscope has developed a plugin for Jenkins that is available in the
Jenkins plugin repository, and has provided a walkthrough of the
implementation.

SmartBear TestComplete Platform

SmartBear Software have a long history in both SOAP and REST
API testing and are probably most well known as the providers
of the commercial version of SOAP UI. SmartBear has entered
the CI market with their TestComplete platform, which provides
developers with the means to create API tests in a variety of
languages and integrate them with SOAP UI. Moreover, these tests
can also be integrated with Jenkins using a plugin, which allows
the tests to be included in the build pipeline for a given API. For CI
servers other than Jenkins, SOAP UI comes with a command line
tool that could be called using script from a build job definition in
the manner we’ve already mentioned above.

Swagger Diff

Swagger Diff is a command line tool created by Civis Analytics
to test backward compatibility between two versions of a Swagger
description for a given API, the idea being to plug this into a CI
server using a script-based build job definition as described above.
On finding a breaking change the tool will return an error, providing
details of the diff that highlights the source of the incompatibility.

https://www.runscope.com/docs/api-testing/analytics
https://www.runscope.com/docs/api-testing/analytics
http://blog.runscope.com/posts/build-runscope-tests-into-your-continuous-integration-process-with-jenkins-plugin
https://smartbear.com/
https://smartbear.com/product/testcomplete/features/
https://github.com/civisanalytics/swagger-diff
https://civisanalytics.com

10 Continuous Integration Tools to Spur API Development 15

Analysis: CI is a Growing Presence in the
API Economy

This compendium highlights the fact that continuous integration
tools related to APIs are a growing presence in the API economy,
with a mixture of both open source and commercial solutions avail-
able to organizations that can help them spur their API programs
through effective, automated integration processes.

Another area we have not covered that is likely to be increasingly
important is from the perspective of the API consumer; publicly
available API descriptions, whether hosted at the API provider or
in an API directory will become triggers for continuous integration,
allowing build jobs to run based on published changes to the format,
generating new client libraries for the API in question.

Real benefits for organizations lie in the practice of continuous inte-
gration. All API providers should consider leveraging the practice
to ensure their efforts in exposing APIs have the best chance of
success.

http://nordicapis.com/api-ebooks/the-api-economy/
http://nordicapis.com/should-every-company-consider-providing-an-api/

Reaching DevOps Zen:
Tracking the Progress of
Continuous Integration

Continuous Integration (CI) is a part of the DevOps process that
aims at integrating code written by a team of developers. This in-
volves building the code along with dependencies, testing it against
a prepared set of unit and integration test suites, and creating
reports listing the resulting artifacts.

By performing regular tests on the code in its entirety, spotting
regressions early on, and producing stable artifacts to base future
versions of the code on, CI helps avoid wasting time dealing
with conflicts in the code that teams are collaborating on. This
is why many consider it to be the cornerstone of agile software
development.

CI is closely related to the idea of Continuous Delivery, in which

16

Reaching DevOps Zen: Tracking the Progress of Continuous Integration 17

the successful builds that result from the continuous integration
process are deployed to staging or even production environments
at regular intervals. CI has become one of the mainstays of modern
software engineering, and all serious development teams have
set up one of the many available CI solutions to accelerate their
common efforts.

Since building code and running tests are usually resource-intensive
processes, teams were quick to eliminate on premise CI servers
in favor of cloud-based SaaS products. Over the last few years,
local building and testing of code has made way for API-driven
continuous integration. As DevOps technologies have evolved of
late, the software companies behind each of the major CI tools have
all had to adapt to them as well.

Let’s delve into what some of them have been doing, and then
examine modern trends in continuous integration.

Traditional CI

AlthoughCruiseControl was the first formal continuous integration
tool, Jenkins was the first to gain widespread adoption. It was
built in Java and open sourced in 2004 by a developer at Sun
Microsystems named Kohsuke Kawaguchi (Jenkins is the largest
fork of the Hudson project).

Using Jenkins, developers can set up a workflow to pull their
code from a version control repository like Subversion, Git, or
Mercurial, and trigger code builds, test runs, and deployments every
time the repository’s mainline has been updated.

Jenkins remains one of the most popular continuous integration
tools on the market. While it was initially only meant to support
Java, legions of developers have contributed plugins for many other
languages.

http://nordicapis.com/10-continuous-integration-tools-spur-api-development/
http://nordicapis.com/living-in-the-cloud-stack-understanding-saas-paas-and-iaas-apis/
http://nordicapis.com/defining-the-emerging-role-of-devops/
https://subversion.apache.org/
https://git-scm.com/
https://www.mercurial-scm.org/
http://nordicapis.com/10-continuous-integration-tools-spur-api-development/
http://nordicapis.com/10-continuous-integration-tools-spur-api-development/

Reaching DevOps Zen: Tracking the Progress of Continuous Integration 18

For a modern development team, the main selling point in favor
of Jenkins, beyond the option of an on-premise build server, is its
flexibility. While its learning curve is somewhat longer than with
hosted CI products, Jenkins can be customized to fit any DevOps
workflow.

Initially Jenkins was only available as on-premise, but several cloud
players have created SaaS solutions based on Jenkins. In particular,
CloudBees, a company that previously offered PaaS hosting for Java
and Scala applications, has recently hired Kawaguchi and pivoted
to focus on their cloud-based Jenkins offering.

Jenkins is often compared to TeamCity by JetBrains, another tra-
ditionally on-premise Java-based CI tool, and Atlassian’s Bamboo,
which can be either on-premise or hosted on Amazon EC2 and
features deep integration with other Atlassian products like JIRA,
Bitbucket, and HipChat.

Test suites within continuous integration workflows have evolved
over time. Initially only unit testswere included, testing individual
objects and software components in isolation. While this was
already much better than nothing, only running unit tests could
leave out problems in the communication between components.
Automated integration testing was then born to mitigate these
risks, but it still wasn’t enough to cover all bases. Indeed, even inte-
gration testing didn’t cover the problems that could be encountered
by the end user navigating a GUI or web page.

Functional testing, previously the exclusive domain of manual
testers, has become fair game for automation. Teams started using
tools like HTTPUnit and Selenium to record browsing behavior and
then replay the tests every time a new build was created.

Continuous integration also enables teams to link software versions
with features and bugs by including issue identifiers from bug
tracking tools in build metadata. In this way, project managers are
able to follow progress from the output of the CI workflow.

http://nordicapis.com/api-driven-devops-spotlight-on-docker/
http://nordicapis.com/api-driven-devops-spotlight-on-docker/
https://www.cloudbees.com/
https://www.jetbrains.com/teamcity/
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/jira
https://bitbucket.org/
https://www.hipchat.com/
http://httpunit.sourceforge.net/
http://www.seleniumhq.org/

Reaching DevOps Zen: Tracking the Progress of Continuous Integration 19

CI in the cloud

Fast forward to 2011, and many dev teams were tired of self-hosting
their own continuous integration system, as configuring it often
proved costly in time and resources — time that could be better
spent working on applications. SaaS solutions quickly proliferated
to fill this gap in the market.

Travis CI is a hosted continuous integration service built on top
of the GitHub API. It lets dev teams build any project, provided
that the code is hosted on GitHub. Travis reacts to triggers within
a GitHub repository such as a commit or a pull request using
webhooks to start tasks such as building a code base. It uses
GitHub not only to fetch the code but to authenticate users and
organizations.

Teams using cloud-based solutions like GitHub and Travis CI for
version control and CI no longer face the headaches of managing
these tools themselves as was necessary only a few years ago.
What’s more, since all actions on both Travis CI and GitHub can
be triggered via their respective APIs, this workflow can be entirely
API-driven.

Another advantage of hosted CI solutions is that they can provide
much broader testing facilities. Browser andOS testing used to be a
tedious affair —workstations and staff had to be dedicated to ensure
that bugs didn’t appear within a certain environment. In contrast,
a hosted solution can maintain a set of cloud-based servers with
different configuration for this purpose. Travis allows testing on
Linux, Windows andMac environments. Travis CI supports a range
of programming languages such as PHP, Ruby, Node.js, Scala, Go,
C and Clojure. It now supports both public and private repositories,
but it was traditionally associated with open source software —
Travis CI’s free version is itself an open source project hosted on
GitHub.

Similar tools out there include:

https://travis-ci.org/
https://developer.github.com/guides/building-a-ci-server/
https://developer.github.com/guides/building-a-ci-server/
https://github.com/travis-ci/travis-ci
https://github.com/travis-ci/travis-ci

Reaching DevOps Zen: Tracking the Progress of Continuous Integration 20

• TestCafe is a specialist service that lets teams record func-
tional tests and runs them in a variety of browsers.

• CircleCI is a popular hosted continuous integration service.
One of its differentiating features is its focus on perfor-
mance. It makes heavy use of parallel computation and splits
test suites to run tests in parallel. CircleCI supports many
startup-friendly programming languages and it supports test-
ing against many modern SQL and NoSQL databases like
PostgreSQL, MongoDB and Riak.

• Codeship is similar to Travis and CircleCI but supports both
GitHub and BitBucket for both code and credentials. It does
continuous integration and continuous delivery, supporting
deployments to PaaS hosting platforms like Heroku and
Google App Engine. It also integrates with internal commu-
nication tools like HipChat and Campfire. Last year Code-
ship introduced ParallelCI, its answer to CircleCI’s parallel
running of test suites.

Mobile CI

The advent of smartphones has led to a cambrian explosion in
mobile application development. Mobile apps have specific require-
ments in terms of their build, test and deployment processes. Some
of the major CI vendors have a mobile CI offering — like CircleCI,
who purchased Distiller to provide support for iOS apps.

We’ve also seen the emergence of mobile CI specialists, such as:

• Hosted-CI, a hosted CI solution focused on iOS apps (as well
as desktop applications for OS X) built on top of Jenkins.

• GreenHouse, which supports native iOS and Android code as
well as cross-platform frameworks like Cordova and Ionic.

• Bitrise is a similar solution. In addition to native Android and
iOS apps, Bitrise supports apps built with Xamarin.

http://testcafe.devexpress.com/
https://circleci.com/
https://codeship.com/
http://blog.circleci.com/announcing-ios-and-android-support/
https://hosted-ci.com/
https://greenhouseci.com/
https://www.bitrise.io/
https://xamarin.com/

Reaching DevOps Zen: Tracking the Progress of Continuous Integration 21

Indeed, mobile applications have different requirements in terms of
testing and distribution, and different mechanisms for dependency
management (such as Cocoapods for Swift and Objective-C apps).

Mobile testing also requires different software fromweb application
testing. Mobile testing frameworks like Espresso for Android and
Appium automate away much of the inherent difficulties, but since
mobile apps — like native desktop apps — run on the client side and
outside of the well-defined context of a browser, that still leaves a
large grey area that developers don’t like to leave unattended.

Crashlytics, now part of Twitter Fabric, has mobile crash reporting
capabilities in addition to its built-in CI support. These alerts help
dev teams analyze and react to difficulties encountered by users
on their mobile devices. HockeyApp also reports crashes for mobile
and desktop apps and enables you to test against simulated mobile
environments.

Since there are wide varieties of mobile clients, especially in the
Android world, it is impractical to have all testing performed in
a centralized manner. Instead, beta testing has been embraced in
the mobile development community, with tools like TestFairy and
TestFlight to distribute tentative new versions of apps to beta testers.

Distribution of mobile apps is a fundamentally different problem
when compared with web applications. Instead of simply pushing
all the code, including client-side components to a server environ-
ment like Heroku or Amazon Web Services, a mobile app must
go through the cumbersome approval process of the relevant app
stores. This slows down the continuous delivery process and unfor-
tunately introduces manual steps in an otherwise fully automated
process.

Fastlane, also now part of Twitter Fabric, aims to streamline the
delivery of apps by automating most elements of the app approval
workflow, like taking screenshots of the new app and dealing with
certificates. Fastlane is sometimes used in combination with a CI
tool like Jenkins.

https://cocoapods.org/
https://google.github.io/android-testing-support-library/docs/espresso/
http://appium.io/
https://try.crashlytics.com/
http://nordicapis.com/twitter-10-year-struggle-with-developer-relations/
http://hockeyapp.net/
https://testfairy.com/
https://developer.apple.com/testflight/
https://github.com/fastlane/fastlane

Reaching DevOps Zen: Tracking the Progress of Continuous Integration 22

Future of CI

Continuous integration and continuous delivery are here to stay.
Most development teams wouldn’t consider tackling a significant
software project without setting up a CI workflow.

But it’s far from a static discipline — there are constant innovations
in the area of CI, and new fields of application. We’ve explained
how CI is relevant to web and mobile development, but the coming
years will show us how it will be integrated into development pro-
cesses in smart watches, smart cars, and more generally throughout
the internet of things. What will CI look like for virtual reality and
biotech software?

APIs are increasingly becoming the bedrock of internet communi-
cations, and stability is paramount to a well-functioning API, so CI
will increasingly matter in API development.

An ongoing problem in CI is the difficulty of automating tests
in development environments that are not always similar to pro-
duction. A recent evolution in DevOps is the growing popular-
ity of Docker, a container technology that allows you to isolate
applications and their dependencies from the underlying systems
they run inside. Docker’s portability has led several CI vendors
to embrace Docker. CircleCI supports container-based applications
and CodeShip recently introduced Jet, its solution to test and deploy
Docker applications.

Docker simplifies modern CI; a throwaway build or test server is
suddenly only an API call away. Docker also reduces the need for
OS testing as it standardizes application runtime environments.

http://nordicapis.com/the-state-of-iot-information-design-why-every-iot-device-needs-an-api/
http://nordicapis.com/10-continuous-integration-tools-spur-api-development/
http://nordicapis.com/api-driven-devops-spotlight-on-docker/
http://nordicapis.com/api-driven-devops-spotlight-on-docker/
http://pages.codeship.com/docker

Reaching DevOps Zen: Tracking the Progress of Continuous Integration 23

Analysis: CI is a Mainstay for
Development

From its beginnings as an additional chore for developer teams
and a somewhat reluctant concession to code quality, Continuous
Integration has become one of the mainstays of modern software
development. CI has has moved to the cloud and is gradually
growing in scope; the next avenue for CI is perhaps the Internet of
Things, an implication we are excited to explore soon. In the next
upcoming chapters we’ll track another important aspect of DevOps,
namely Docker, so read on.

Introducing Docker
Containers

One of the major issues universally faced in API development
is the management, packaging, and distribution of dependencies.
The dependency set required by an API might make it extensible,
wonderful to use, and extremely powerful. However, if hard to
manage, dependencies could spell adoption limbo.

A solution to this age-old problem has exploded onto the scene in
recent years, however. Docker is a system by which a complete
ecosystem can be contained, packaged, and shipped, integrating
“code, runtime, system tools, system libraries - anything you can
install on a server”.

In this chapter we’re going to take a look at Docker and its container
system.We’ll discuss some cases where using Docker is a good idea,
some cases where it may not be the best solution, and the strengths
and weaknesses of the system as a whole.

24

https://www.docker.com/whatisdocker
https://www.docker.com/whatisdocker

Introducing Docker Containers 25

What is Docker?

Before we can critique it, we need
to fully understand what Docker
is, and how it functions. Simply
put, Docker is a methodology by which the entire development
ecosystem can be provided to API users and consumers in a singu-
lar application. Docker is a methodology to handle dependencies
and simplify functionality, and can be used with a variety of
Microservice languages.

The “Classic” API Approach

Consider the “classic” method of dependency handling and ecosys-
tem management. An API is developed which issues remote calls
to a server or service. These calls are handled by a framework that
is referenced external to the API. This framework then requests
resources external to the API server in the form of dependencies,
which allow for the code to function in the methodology it was
designed for. Finally, data is served to the client in the constrained
format determined by the API.

http://nordicapis.com/microservice-showdown-rest-vs-soap-vs-apache-thrift-and-why-it-matters/
http://nordicapis.com/microservice-showdown-rest-vs-soap-vs-apache-thrift-and-why-it-matters/
http://stackoverflow.com/questions/3934866/what-is-the-difference-between-an-api-framework-and-middleware
http://stackoverflow.com/questions/3934866/what-is-the-difference-between-an-api-framework-and-middleware

Introducing Docker Containers 26

Heavy and unwieldy, this system is antiquated in many ways. It
depends on the developers of dependencies to update their systems,
maintain effective versioning controls, and handle external security
vulnerabilities.

Additionally, many of these dependencies are proprietary, or at the
very least in the hands of a single developer. This means that code
is maintained external to the API, and any change in functionality,
failure in security, modification of additional dependencies used by
the dependency author, and so forth can cause catastrophic failure.

Barring dependency issues, the “classic” approach is simply re-
source heavy and slow. It requires that developers host the entire

http://nordicapis.com/day-0-flash-exploits-versioning-and-the-api-space/

Introducing Docker Containers 27

system in a web of interlacing APIs, attempting to hack together a
system that functions. It’s a delicate, functional ecosystem that is
impressive in its complexity — but with this complexity comes the
potential for the classic approach to become a veritable “house of
cards”.

The Docker Approach

Docker has created a completely different approach. Instead of
depending on multiple external sources for functionality, Docker
allows for the remote use of operating system images and infras-
tructure in a way that distributes all the dependencies, system
functionalities, and core services within the API itself.

Docker calls these “containers”. Think of containers like virtual
machines — but better.

A virtual machine (VM) packages an application with the binaries,
libraries, dependencies, and an operating system — and all the bloat
the comes with it. This is fine for remote desktop and enterprise
workstation usage, but it leads to a ton of bandwidth waste, and
isn’t really a great approach for APIs.

Docker containers, on the other hand, are more self sufficient.
They contain the application and all of its dependencies, but use
a communal kernel with other applications in the userspace on the
host operating system. This frees up the container to work on any
system, and removes the entirety of the operating system bloat of
virtual machines by restricting contents to only what the API or
application needs.

Why Docker?

With its similarities to virtual machines, a lot of developers are
likely wondering what the buzz about Docker is. What, specifically,

http://nordicapis.com/balancing-complexity-and-simplicity-in-api-design/
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Kernel_(operating_system)

Introducing Docker Containers 28

makes it so great? There are a lot of reasons to love docker:

• Open Source - Docker is designed to take advantage of the
wide range of open standards present on both the Linux
and Microsoft OS ecosystem. This allows it to support pretty
much any infrastructure configuration you throw at it, while
allowing for transparency in the code base.

Unlike closed systems, open systems
are routinely checked for security vul-
nerabilities by those who use them,
and are thus considered by many to be
“more secure”. Additionally, because
these standards are meant to promote
interoperability between disparate sys-
tems, compatibility between systems in
the code base or library functionality is
non-existent.

• Security Through Sandboxing
- Docker may not call it “sand-
boxing”, but that’s essentially
what it is — every application is
isolated from other applications
due to the nature of Docker con-
tainers, meaning they each run
in their own separate, but con-
nected, ecosystem.

This results in a huge layer of security
that cannot be ignored. In the classic
approach, APIs are so interdependent with one another that breach-
ing one often results in the entire system becoming vulnerable un-
less complex security systems are implemented. With applications
sandboxed, this is no longer an issue.

http://nordicapis.com/day-0-flash-exploits-versioning-and-the-api-space/
http://nordicapis.com/day-0-flash-exploits-versioning-and-the-api-space/
http://nordicapis.com/api-security-the-4-defenses-of-the-api-stronghold/

Introducing Docker Containers 29

• Faster Development and Easier Iteration - Because a wide
range of environments can be created, replicated, and aug-
mented, APIs can be developed to work with a variety of
systems that are otherwise not available to many developers.

As part of this benefit, APIs can be tested in enterprise envi-
ronments, variable stacks, and even live environments before full
deployment without significant cost. This process integrates won-
derfully with Two-Speed IT development strategies, allowing for
iteration and stability across a service. This has the additional
benefit of supporting a truly effective microservices architecture
style, due largely to the overall reduction of size and the lean-
strategy focused methodology.

• Lightweight Reduction of Redundancy - By the very nature
of Docker containers, APIs share a base kernel. This means
less system resources dedicated to redundant dependencies
and fewer instances to eat up server RAM and processing
chunks.

Common filesystems and imaging onlymakes this a more attractive
proposition, easing the burden of space created by multiple-depen-
dency APIs by orders of magnitude. This makes the API container
simple to use and understand, making the API truly functional and
useful.

http://nordicapis.com/3-ways-to-build-microservices/
http://nordicapis.com/functional-vs-useful-what-makes-a-useful-api/
http://nordicapis.com/functional-vs-useful-what-makes-a-useful-api/

Introducing Docker Containers 30

Another representation of Docker architecture

Simple Docker Commands

Part of the appeal of Docker is how simple the commands and
variables therein are. For example, to create a container, you simply
issue the following call:

1 POST /containers/create

Using a list of variables, you can completely change how this
container functions, what its name is, and what the container has
within. You can change everything from the name using:

1 --name=""

To the MAC Address of the container itself:

1 --mac-address=""

You can even change the way the container functions with the
server itself, assigning the container to run on specific CPU cores
by ID:

Introducing Docker Containers 31

1 --cpuset-cpus=""

When the “docker create” command is run, a writable layer is
created over the imaged kernel that allows modification of the
entire application functionality.

These variables are also available for the “run” command. Most
importantly, the “run” command can also attach a static address
to the API container utilizing the “-p” and “–expose” calls:

1 docker run -p 192.168.0.1:8910

2 docker run --expose 8910

These two calls will first assign the container to port 8910 of the IP
192.168.0.1, and then expose that port to forward facing traffic (in
effect opening the port completely for API functionality).

In order to make these containers functional, of course, a container
needs to connect to an image. These images are built utilizing the
“build” call:

1 docker build -t ubuntu

This builds a simple image, which is then given an “IMAGE ID”
variable that can be called using the “docker images” call:

1 docker images -a --no-trunc=false

This call lists the entirety of the Docker image library without
truncation, which can then be called and utilized using the run
variables.

Docker avoids a lot of the dependency loading inherent in the API
process, simplifying code and making for a leaner network and
system utilization metric. For instance, view a theoretical custom
import in Golang:

http://nordicapis.com/writing-microservices-in-go/
http://nordicapis.com/writing-microservices-in-go/

Introducing Docker Containers 32

1 package main

2

3 import (

4 "encoding/json"

5 "fmt"

6 "net/http"

7 “customlib”

8 “main”

9 “golang-local/issr”

10 “functionreader”

11 “payment_processor”

12 “maths”

13)

In Docker, an equivalent request would simply be:

1 docker run --name tracecrt

Caveat Emptor

Docker containers are a good solution for a very common problem,
but they’re not for everybody. While it significantly simplifies the
API system at runtime, this comes with the caveat of an increased
complexity in setting up the containers.

Additionally, because containers share kernels, there’s a good deal
of redundancy that is lost by design. While this is good in terms
of project scope management, it also means that when there is an
issue with the kernel, with an image, or with the host itself, an entire
ecosystem is threatened.

One of the biggest caveats here is actually not one of Docker itself,
but of understanding concerning the system. Many developers are
keen to treat Docker as a platform for development rather than

http://www.projectsmart.co.uk/project-scope-is-king.php

Introducing Docker Containers 33

for what it is — functionally speaking, a great optimization and
streamlining tool. These developers would be better off adopting
Platform-as-a-Service (PaaS) systems rather than managing the
minutia of self-hosted and managed virtual or logical servers.

http://nordicapis.com/living-in-the-cloud-stack-understanding-saas-paas-and-iaas-apis/
http://nordicapis.com/living-in-the-cloud-stack-understanding-saas-paas-and-iaas-apis/

Introducing Docker Containers 34

Analysis: Use Docker in the Right
Scenario

Docker containers are incredibly powerful, just like the language
that backs them. With this considered, containers are certainly
not for everyone — simple APIs, such as strictly structured URI
call APIs, will not utilize containers effectively, and the added
complexity can make it hard for novice developers to deal with
larger APIs and systems.

That being said, containers are a great solution for a huge problem,
and if a developer is comfortable with managing images and the
physical servers or systems they run on, containers are a godsend,
and can lead to explosive growth and creativity.

http://nordicapis.com/a-tale-of-four-api-designs-dissecting-common-api-architectures/
http://nordicapis.com/a-tale-of-four-api-designs-dissecting-common-api-architectures/
http://nordicapis.com/achieve-accelerated-growth-apis/
http://nordicapis.com/apis-part-of-the-creative-palette/

Digging into Docker
Architecture

The advent of cloud computing has changed the way applications
are being built, deployed and hosted. One important development
in recent years has been the emergence of DevOps — a discipline
at the crossroads between application development and system
administration.

Empowered developers have been given a new wide set of tools to
enable:

• Application lifecycle management with continuous integra-
tion software like Jenkins, Travis CI, CircleCI and CodeShip;

• Server provisioning with software and metadata using con-
figuration management tools like Chef, Puppet, Salt and
Ansible;

• Hosting applications in the cloud, whether they use an IaaS
provider like AmazonWeb Services, Google Compute Engine

35

http://nordicapis.com/defining-the-emerging-role-of-devops/
https://jenkins-ci.org/
https://travis-ci.org/
https://circleci.com/
https://codeship.com/
https://www.chef.io/chef/
https://puppetlabs.com/
http://saltstack.com/
https://www.ansible.com/
https://aws.amazon.com/
https://cloud.google.com/compute/

Digging into Docker Architecture 36

or Digital Ocean, or a PaaS solution like Heroku, Google App
Engine or any technology-specific offering.

While these tools are usually wielded day-to-day from the com-
mand line, they have all sprouted APIs, and developers are in-
creasingly building API clients to manage the DevOps workflows
at technology companies just as they do within their own products.

Out of this set of emerging technologies, one of them has taken the
world of DevOps by storm in the last three years: Docker.

Virtual Containers

Docker is an open source project that is backed by a company of the
same name. It enables one to simplify and accelerate the building,
deployment, and running of applications, while reducing tension
between developers and traditional Ops departments.

Docker virtual containers are packaged with everything the ap-
plication needs to run on the host server and are isolated from
anything else they don’t need — containers can be moved from
one host to another without any changes. Contrary to hypervisor-
managed virtual machines, Docker containers are lightweight and
quick to start.

Docker also comes with tools to build and deploy applications
into Docker containers. Containers can be hosted on regular Linux
servers or in the cloud (or pretty much anywhere using Docker
Machine).

Docker Architecture

Each Docker setup includes a Docker client (typically a command
line interface, but Docker also features a Remote API and a daemon,

https://www.digitalocean.com/
https://www.heroku.com/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://www.docker.com/
https://docs.docker.com/machine/overview/
https://docs.docker.com/machine/overview/
https://docs.docker.com/engine/reference/api/docker_remote_api/

Digging into Docker Architecture 37

the persistent process that runs on each host and listens to API
calls. Both the client and the daemon can share a single host, or
the daemon can run in a remote host.

Docker images are read-only templates from which containers are
generated. An image consists of a snapshot of a Linux distribution
like Ubuntu or Fedora — and maybe a set of applications or runtime
environments, like Apache, Java, or ElasticSearch. Users can create
their own Docker images, or reuse one of the many images created
by other users and available on the Docker Hub.

Docker registries are repositories from which one can download or
upload Docker images. The Docker Hub is a large public registry,
and can be used to pull images within a Docker workflow, but
more often teams prefer to have their own registry containing the
relevant subset of public Docker images that it requires along with
its own private images.

Docker containers are directories containing everything needed
for the application to run, including an operating system and a
file system, leveraging the underlying system’s kernel but without
relying on anything environment-specific. This enables containers
to be created once and moved from host to host without risk of
configuration errors. In other words, the exact same container will
work just as well on a developer’s workstation as it will on a remote
server.

A Docker workflow is a sequence of actions on registries, images
and containers. It allows a team of developers to create containers
based on a customized image pulled from a registry, and deploy
and run them on a host server. Every team has its own workflow
— potentially integrating with a continuous integration server
like Jenkins, configuration management tools like Chef or Puppet,
and maybe deploying to cloud servers like Amazon Web Services.
The daemon on each Docker host enables further actions on the
containers — they can be stopped, deleted or moved. The result of
all of these actions are called lifecycle events.

https://hub.docker.com/

Digging into Docker Architecture 38

Who uses Docker?

Since it arrived onto the scene in 2013, Docker has seen widespread
adoption at technology companies. Interestingly, whereas early
adopters for most new technologies are typically limited to small
startups, large enterprises were quick to adopt Docker as they
benefit more from the gains in efficiency that it enables, and from
the microservices architecture that it encourages. Docker’s adopters
include Oracle, Cisco, Zenefits, Sony, GoPro, Oculus and Harvard
University.

Docker’s growth has been phenomenal during the last three years,
its adoption numbers are impressive, and it has managed to attract
investments from top-tier venture capital funds.

http://nordicapis.com/3-ways-to-build-microservices/
http://www.oracle.com/index.html
http://www.cisco.com/
https://www.zenefits.com/
http://www.sony.com/
https://gopro.com/
https://www.oculus.com/en-us/
http://www.harvard.edu/
http://www.harvard.edu/
http://thenewstack.io/managing-growth-and-fostering-an-ecosystem-in-the-open-docker-reports-on-engagement-and-performance-metrics/
https://www.datadoghq.com/docker-adoption/
http://fortune.com/2015/04/16/docker-funding-container/
http://fortune.com/2015/04/16/docker-funding-container/

Digging into Docker Architecture 39

Where does Docker fit in the DevOps
puzzle?

While DevOps has made it easier to provision servers and to master
configuration management for developers and ops teams, it can
be a bit overwhelming for beginners. The dizzying number of
technologies to choose from can be frustrating, and it can invite
a lot of complexity into a company’s workflow if the purpose of
each component is poorly understood.

Docker doesn’t fall neatly into one of the categories we listed in our
introduction. Rather, it can be involved in all areas of DevOps, from
the build and test stages to deployment and server management.

Its features overlap with those of configuration management soft-
ware - Docker can be used as a substitute for Chef or Puppet to an
extent. These tools allow you to manage all server configuration in
one place instead of writing a bunch of bash scripts to provision
servers, which becomes unwieldy when the number of servers hits
the hundred mark. Complexity invariably starts to creep in when
upgrades, installations and changes in configuration take place. The
resulting Chef cookbooks and Puppet modules then need to be
carefully managed for state changes, which is traditionally a shared
task between developers and ops people.

Docker’s philosophy around configurationmanagement is radically
different. Proponents of immutable infrastructure love Docker
because it encourages the creation of a single, disposable container
with all the components of an application bundled together, and
deployed as-is to one or more hosts. Instead of modifying these con-
tainers in the future (and therefore managing state like you would
with Chef or Puppet), you can simply regenerate an entirely new
container from the base image, and deploy it again as-is. Managing
change therefore becomes simplified with Docker, as does repeating
the build and deployment process and aligning development, stag-
ing and production environments. As James Turnbull writes in The

http://nordicapis.com/defining-the-emerging-role-of-devops/
http://getcloudify.org/2014/10/30/Docker-cloud-orchestration-configuration-management.html
https://twitter.com/kartar
http://www.dockerbook.com/

Digging into Docker Architecture 40

Docker Book, “the recreation of state may often be cheaper than the
remediation of state”.

Of course, Docker lacks the flexibility afforded by tools like Chef
and Puppet, and using it by itself assumes that your team operates
only with containers. If this isn’t the case and your applications
straddle both container-based processes and bare metal or VM-
based apps, then configuration management tools retain their use-
fulness. Furthermore, immutable infrastructure doesn’t work when
state is essential to the application, like in the case of a database. It
can also be frustrating for small changes.

In these cases, or if Chef or Puppet are an important part of a team’s
architecture prior to introducing Docker, it is quite easy to integrate
these tools within a Docker container, or even to orchestrate Docker
containers using a Chef cookbook or a Puppet module.

Continuous integration software like Jenkins can work with Docker
to build images which can then be published to a Docker Registry.
Docker also enables artifact management by versioning images.
In that way the Docker Hub acts a bit like Maven Central or public
GitHub artifact repositories.

http://www.dockerbook.com/
http://www.dockerbook.com/
http://search.maven.org/
http://nordicapis.com/why-api-devs-love-github/

Digging into Docker Architecture 41

Up Next: Tooling Built on Docker
Remote API

All of the events listed in the previous section can be triggered via
the Docker command line interface, which remains the weapon of
choice for many system engineers.

But daemons can also be accessed through a TCP socket using
Docker’s Remote API, enabling applications to trigger and monitor

https://docs.docker.com/engine/reference/api/docker_remote_api/
http://blog.trifork.com/2013/12/24/docker-from-a-distance-the-remote-api/

Digging into Docker Architecture 42

all events programmatically. Docker’s API also exposes container
metadata and key performance metrics.

The Remote API is essentially a well-documented REST API that
uses an open schema model and supports basic authentication of
API clients. The availability of this API has opened the door for
creative developers to build tools on top of the Docker stack. In the
next chapter, we’ll explore awesome tools that consume the Remote
API to see real world examples of API-driven DevOps in action.

http://blog.trifork.com/2013/12/24/docker-from-a-distance-the-remote-api/
http://blog.trifork.com/2013/12/24/docker-from-a-distance-the-remote-api/
https://en.wikipedia.org/wiki/Entity%E2%80%93attribute%E2%80%93value_model

Tools Built on Top of the
Docker API

As we’ve seen in the two previous chapters, Docker is a popular
new technology that lets development teams bundle applications in
virtual containers to easily build and deploy them. Docker reduces
the complexity of DevOps workflows and encourages the practice
of immutable infrastructure, where the entire application, along
with its underlying operating system, is recreated and redeployed
as a lightweight container for each change to an application, rather
than relying on incremental updates.

Given Docker’s remarkable success story over the last three years
and the availability of its remote API, it was inevitable that Docker
would become a popular platform as well, on which developers
have built all kinds of software.

In keeping with Docker’s own philosophy, third party developers in
this new ecosystem have contributed many open source projects.

43

http://nordicapis.com/defining-the-emerging-role-of-devops/

Tools Built on Top of the Docker API 44

In this chapter we review these projects to see how they are using
the Docker API.

Dogfooding

The foremost user of the Docker API is Docker itself — they host a
series of tools to combine and orchestrate Docker containers in use-
ful configurations. [Docker Compose] (https://docs.docker.com/compose/)
facilitates the deployment of multi-container applications, while
Docker Swarm allows the creation of clusters of Docker containers.

While Docker itself is active in this area, they welcome the contri-
bution of other actors in orchestrating Docker containers. Orches-
tration is a broad term, but we can break it down into scheduling,
clustering, service discovery, and other tasks.

It is usually undesirable to have several processes running inside the
same Docker container, for reasons of efficiency, transparency, and
to avoid tight coupling of dependencies. It’s much more practical
for each container to remain limited to a single responsibility and
to offer a clearly defined service to the rest of the infrastructure.
A complete application therefore usually involves a collection of
Docker containers. This introduces complexity for which new solu-
tions abound.

Scheduling

Scheduling of Docker containers is also an important aspect of
container orchestration. In this context scheduling refers to the
rules by which containers are run on a given host. For example,
a scheduling policy might involve two containers having to run on
the same host when their functionalities are synergistic. Thanks to
this policy, the two containers can be abstracted away as a single
application when defining cluster behavior.

https://docs.docker.com/swarm/overview/

Tools Built on Top of the Docker API 45

In addition to the scheduling features of Docker Swarm, Fleet
by CoreOS and Marathon are examples of open source Docker
schedulers.

Cluster Management

Clustering involves managing collections of Docker hosts into a
cohesive whole so that they might operate together as a single
system.

There are open source alternatives for Docker Swarm, like Google’s
Kubernetes which lets teams define ‘pods’ of Docker containers.
Others include Shipyard, Fleet by CoreOs and Marathon.

Companies such as Spotify have developed and open sourced their
own Docker container management system, such is the need for a
well-adapted Docker-based system for each use case.

Service Discovery

Service discovery refers to the discovery of the IP addresses related
to a service on a network, which can be a complicated process in a
multi-host, clustered environment.

Several companies like GliderLabs have leveraged Docker’s Remote
API to listen to events and create utilities around container-based
software. Registrator, an open source project supported by Weave,
helps improve service discovery by inspecting newly created
Docker containers and registering the new services in a directory
like Consul.

https://github.com/coreos/fleet
https://github.com/coreos/fleet
https://mesosphere.github.io/marathon/docs/native-docker.html
http://kubernetes.io/
http://kubernetes.io/
http://shipyard-project.com/
https://coreos.com/fleet/docs/latest/launching-containers-fleet.html
https://mesosphere.github.io/marathon/
https://github.com/spotify/helios
http://gliderlabs.com/
https://github.com/gliderlabs/registrator
https://www.consul.io/

Tools Built on Top of the Docker API 46

Networking

To connect the Docker containers that form an application, Docker
has some networking features. A default virtual bridge network is
enabled by default, but there is a choice of configurations. Vendors
have offered alternative network configurations for different use
cases.

Weave creates a virtual network of micro-routers to connect con-
tainers across multiple hosts. This leads to simpler network config-
uration, dynamic addition of nodes to the network, and encrypted
communications. Weave offers additional services such as the net-
work monitoring product Weave Scope.

Flannel, an open source virtual networking solution by CoreOS,
creates an overlay network using an Etcd cluster to store network
configuration.

Project Calico is another open source networking solution for
Docker containers, based on a pure ‘Layer 3’ approach, meaning
that it is not an overlay network — no packet encapsulation happens
above the third layer of the OSI model. This has the benefit of
increasing performance when compared to the other solutions.

Storage

One problem that aficionados of immutable infrastructure have,
which Docker mediates, is databases. Data in databases is mutable
by definition, so a container featuring a database cannot simply be
recreated from scratch and redeployed without compromising the
database’s integrity.

There are also native Docker solutions to this problem in the form of
data volumes and data volume containers. Data volumes are persis-
tent and survive the deletion of the containers they are connected to,
and the data they contain remain inviolate throughout the Docker

https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://www.weave.works/
https://github.com/coreos/flannel
https://github.com/projectcalico/calico-containers
http://nordicapis.com/living-in-the-cloud-stack-understanding-saas-paas-and-iaas-apis/
https://docs.docker.com/engine/userguide/containers/dockervolumes/

Tools Built on Top of the Docker API 47

life cycle. A data volume container can be used when sharing data
across multiple containers.

Data volumes can be backed up and restored; products like Flocker
by ClusterHQ, an open source data volume manager, manages data
volumes and containers, and performs data migration in order to
support container-based production databases.

Continuous Integration

Many tools exist in the area of continuous integration (CI) to
better handle Docker containers in the build, test, and deployment
cycle. For example, CodeFresh can be used to trigger the creation
and deployment of Docker containers by detecting changes to a Git
repository or a new build from the continuous integration server.

CodeShip’s Jet is a new CI platform for Docker. It can pull images
from any Docker registry and integrate with Docker Compose to
easily perform concurrent building and deploying of container-
based applications.

Drone is another continuous delivery platform built on top of
Docker, that uses an ephemeral container during the build process.

Hosted Docker Registries

In addition to the DockerHub itself, several companies offer [hosted
Docker Registries] (http://rancher.com/comparing-four-hosted-docker-
registries/), like Quay.io, Artifactory and Google’s Container Reg-
istry. These services serve as private repositories for containers and
offer advanced repository features, third party integrations, and a
clean user experience for DevOps engineers.

https://clusterhq.com/flocker/introduction/
https://codefresh.io/
https://blog.codeship.com/introducing-jet-codeships-platform-for-docker/
https://github.com/drone/drone
https://quay.io/
https://www.jfrog.com/artifactory/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/

Tools Built on Top of the Docker API 48

Log Aggregation

Logspout is another open source project by GliderLabs. When sev-
eral Docker containers share a single host server, Logspout performs
log routing and aggregation into a log management system like
PaperTrail. Also, Filebeat tallies a container’s logs and sends them
to Logstash.

Monitoring

A slew of third partymonitoring solutions for Docker-based apps
are available, built by some of the biggest names in the cloud
monitoring space. Leveraging Docker’s stats API, they display the
resulting data in elaborate dashboards.

Examples of these monitoring solutions include:

• A Docker extension by AppDynamics,
• a Docker-enabled DataDog agent,
• first-class citizen treatment of Docker containers in New
Relic,

• and Scout’s Docker agent, itself distributed as a Docker
image.

Configuration Management

Docker lets you add custom metadata to images, containers, and
processes (daemons) via labels. Labels are key-value pairs that are
used to specify custom configuration like versioning and environ-
ment particulars.

To avoid naming collisions, Docker encourages the use of names-
paces in these labels, but doesn’t enforce them. Docker Label

https://github.com/gliderlabs/logspout
https://papertrailapp.com/
https://github.com/bargenson/docker-filebeat
https://community.appdynamics.com/t5/eXchange-Community-AppDynamics/Docker-Monitoring-Extension/idi-p/14749
https://www.datadoghq.com/
https://blog.newrelic.com/2015/05/06/docker-support-2/
https://blog.newrelic.com/2015/05/06/docker-support-2/
https://hub.docker.com/r/scoutapp/docker-scout/
https://docs.docker.com/engine/userguide/labels-custom-metadata/
https://github.com/garethr/docker-label-inspector

Tools Built on Top of the Docker API 49

Inspector is a utility by Gareth Rushgrove, a senior engineer at
Puppet Labs, that checks published Docker images against these
guidelines or a given JSON schema.

Security Auditing

As some have raised questions about the inherent security of con-
tainer-based applications, and although Docker itself has plugged
many of the holes over the years, vendors have offered solutions
to further secure Docker apps. One example is Scalock, a company
that has developed software to scan containers for security issues,
control access to containers, and monitor containers at runtime to
make sure they don’t overstep their authorization profile.

PaaS

The multitude of new Docker-based software has arguably engen-
dered new difficulties in composing these tools together, but this is
a symptom of a maturing ecosystem. A handful of companies have
made the ambitious bet to create an end-to-end PaaS-like solution
for building, deploying, orchestrating, and monitoring Docker-
based applications, thereby hiding all of this complexity.

Openshift is RedHat’s PaaS solution built on top of Docker and
Kubernetes. Deis is a Heroku-inspired PaaS solution based on
Dockerand CoreOS by Engine Yard. Paz is an open source project
based on Docker, CoreOS, Etcd and Fleet that lets teams host their
own PaaS-like workflow for container applications.

Lastly, Docker has recently acquired Tutum, a PaaS-like suite for
deploying and managing Docker containers, renaming it Docker
Cloud.

https://github.com/garethr/docker-label-inspector
https://github.com/garethr/docker-label-inspector
https://twitter.com/garethr
https://puppetlabs.com/
https://medium.com/chasing-buzzwords/docker-has-a-security-problem-8abd6e034027#.1a458c40d
https://www.scalock.com/
http://blog.heavybit.com/blog/2015/3/23/dockermeetup
https://www.openshift.com/
http://www.redhat.com
http://deis.io/overview/
https://www.engineyard.com/
https://github.com/paz-sh/paz
https://cloud.docker.com/
https://cloud.docker.com/

Tools Built on Top of the Docker API 50

Full-blown OS

Such is the popularity of Docker that some people have ventured so
far as to create entire operating systems made of Docker containers.

Rancher’s RancherOS is a lightweight operating system made ex-
clusively out of Docker containers. It is a 20 MB Linux distribution
designed to run container-based apps.

HypriotOS is a Docker playground for Raspberry Pi. It allows you to
deploy container applications on these tiny computers and consists
of a lightweight image that can fit on an SD Card.

http://rancher.com/
http://blog.hypriot.com/post/get-your-all-in-one-docker-playground-now-hypriotos-reloaded/
https://www.raspberrypi.org/

Tools Built on Top of the Docker API 51

Analysis: Remote Docker API
Demonstrates Automated DevOps in

Action

Docker’s emergence has given birth to a new ecosystem of DevOps
software. It will likely keep growing in the future as the share of
container-based applications (as opposed to VM-based) increases.

http://www.networkworld.com/article/3031020/virtualization/containers-vs-vms-it-comes-down-to-state-management-networking-and-sprawl.html

Description-Agnostic API
Development with API

Transformer

Whilst many aspects of the API economy are subject to discussion
and conjecture, if there is one truth it’s this: When it comes to
successfully describing your API, the jury is out on the best tool
for the job. As the API economy has grown so has the number of
API description specifications, each with their own specific format
and supporting tools. The fact that Swagger has been chosen by
the Linux Foundation to be the formative standard for the Open
API Initiative might indicate that Swagger will become even more
prevalent, but given the investment by organizations in a particular
specification choice there is unlikely to be a homogenous approach
adopted across the industry any time soon.

Alongside this dialectic, the increasing popularity of the API-first
design approach is making API description specifications more

52

http://swagger.io/introducing-the-open-api-initiative/
https://openapis.org/
https://openapis.org/

Description-Agnostic API Development with API Transformer 53

fundamental to the development process. API specifications are
becoming the product of design, generated by prototyping tools
such as RAML Designer, API Blueprint, Readme.io, or Swagger
Editor, with both the documentation and a mock-up available
before the developer starts coding. This is a departure from the
retrospective method of description that has generally prevailed
until recently, where the developer annotates code or manually
produces a schematic representation of the API to convey their
design. In contrast, API-first design strives to optimize the API
expressly for its own goals, purposefully ignoring organizational
constraints, architectures and programmatic conventions to create
an API definition that exactly meets its design intention and re-
quirements. However, the API-first design principle may also result
in technology lock-in for development teams, binding developers
to a given set of tools and programming languages that support the
chosen specification format.

Where API Transformer Fits

The evolution of the API design and development process is one
of the reasons why the API Transformer, created by APIMATIC is
an interesting development. API Transformer provides a tool, the
“Convertron” that makes it easy for developers to convert from one
API specification format to another, supporting themajority of pop-
ular API specifications including major Swagger versions, RAML,
and WADL. API Transformer provides a web UI that a developer
can use to convert an existing specification to an alternative format
simply by completing the required fields:

https://apimatic.io/
https://apitransformer.com

Description-Agnostic API Development with API Transformer 54

However, the real power of Convertron is that it also provides a
simple API, providing the same functionality as the UI in a manner
that can be used programmatically. The example below is a cURL
command that converts a Swagger 2.0 specification, the Swagger-
provided pet store example to RAML:

1 curl -o petstore.raml -d 'url=https://raw.githubusercon\

2 tent.com/swagger-api/swagger-spec/master/examples/v2.0/\

3 json/petstore.json' https://apitransformer.com/api/tran\

4 sform?output=raml

This functionality makes several interesting use cases possible:

• It allows developers to choose the API specification that
makes most sense to them or can be consumed by their fa-
vorite development tools, meaning design and development
teams have greater flexibility;

• An API provider can also offer API specifications for down-
load from their developer portal in a variety of formats,
which may be helpful to the developer community and

Description-Agnostic API Development with API Transformer 55

increase engagement by communicating to them in a way
they understand;

• An API provider can extend the coverage of their testing,
by testing against generated formats to ensure there are
few semantic differences between one format and another,
providing greater resilience in the development process;

• Finally, API providers can also easily migrate away from
“legacy” description specifications to ones with better sup-
port e.g. WADL.

Example Use Case

In order to test the use cases above we took the concept of a de-
veloper portal where API Transformer is used to create translations
of an API description. The API provider that owns the developer
portal in this use case specifies their APIs using Swagger, and
publishes the specification in different formats as as a convenience
to the developer community. In this scenario we envisaged this
being a facet of the development process, embedded in continuous
integration: When code is published to the git repository for the
API, a process is executed that creates translations of the Swagger
description in several pre-defined formats. The steps in the process
are:

• Developers push code changes to the git repository for the
API;

• The CI server detects the commit and spins up an instance of
the API, checking to see if the Swagger JSON had changed;

• If a change is detected a Gherkin-style test suite is executed
against the API;

• On successful completion of the test suite a version of the
specification is generated in the alternative formats the API
provider makes available. This is staged ready to be pushed
in a CDN to populate the portal.

Description-Agnostic API Development with API Transformer 56

To demonstrate this we’ve created a working prototype in Python
and Jenkins, the configuration being available on GitHub. Firstly,
we created a very simple API using Flask-RESTPlus, describing the
API using the Swagger-based syntactic sugar that Flask-RESTPlus
offers:

1 from flask import Flask

2 from flask.ext.restplus import Api, Resource, fields

3 from uuid import uuid4

4

5 app = Flask(__name__)

6 api = Api(app,

7 version="1.0",

8 title="API Transformer demonstration",

9 description="API created to demonstrate the f\

10 unctionality offered by the API Transformer Convertron"\

11)

12 demo_ns = api.namespace('demo', description='Demo opera\

13 tions')

14

15

16 @demo_ns.route('')

17 class Demo(Resource):

18 @api.doc(description='A demo HTTP GET',

19 responses={400: ("Bad request", api.model(\

20 'Error', {"message": fields.String})),

21 500: "Unhandled exception (capt\

22 ured in server logs)"})

23 def get(self):

24 return 'This is a demo!', 200

25

26 @api.expect(api.model('Demo Request', {"data": fiel\

27 ds.String(required=True)}))

28 @api.doc(description='A demo HTTP POST',

29 responses={400: ("Bad request", api.model(\

https://github.com/SensibleWood/TransformerCI

Description-Agnostic API Development with API Transformer 57

30 'Error', {"message": fields.String})),

31 500: "Unhandled exception (capt\

32 ured in server logs)"})

33 @api.marshal_with(api.model(

34 'Demo Response',

35 {"id": fields.String(required=True), "data": fi\

36 elds.String(required=True)}), code=201)

37 def post(self):

38 return {'id': uuid4().hex, 'data': 'Created new\

39 demo resource'}, 201

40

41 if __name__ == '__main__':

42 app.run(port=8080, debug=True)

For the purpose of brevity we then created a simple job that trig-
gered when a commit was made to a local git repository (in reality
wewould obviously add the test suite and check for content changes
for each new version). When triggered, a shell script build step is
executed that initializes an instance of our demo API, downloads
a copy of the Swagger JSON, and then loops through our target
alternative format types:

1 # Loop through formats and transform

2 for format in raml "api%20blueprint" "apimatic" ; do

3 ext=$(echo $format|tr " " "_")

4

5 # Curl for each target format

6 echo "info: Generating spec for ${format}"

7 curl -X POST "https://apitransformer.com/api/transf\

8 orm?output=$format" \

9 -o $WORKSPACE/transformer_output/app.${ext} -H "Con\

10 tent-Type: text/plain" -d @$WORKSPACE/swagger.json

11

12 if [[$? -ne 0]] ; then echo "error: Failed to gen\

Description-Agnostic API Development with API Transformer 58

13 erate spec" && exit -1; fi

14

15 done

On successful execution new translations of the Swagger speci-
fication are generated in RAML, APIMATIC and API Blueprint
formats and saved in the job workspace. The new versions of the
specification are pushed to an S3 bucket (using the S3 Plugin, ready
to be referenced by a CloudFront distribution.

S3 Bucket

https://wiki.jenkins-ci.org/display/JENKINS/S3+Plugin

Description-Agnostic API Development with API Transformer 59

Analysis: The Value of API Transformer

There is no doubt that API Trans-
former offers a useful prospect for
API designers and developers to
help them quickly convert an API
from one description specification
to another. Further due diligence
and testing on the part of the de-
veloper community will ascertain
whether any semantic differences

exist between source specifications and any of the targets that API
Transformer generates, and this will prove its value as a tool for the
API community.

The Present and Future of
Configuration Management

So far we’ve described DevOps as the set of tools, processes and
activities that modern software development teams put in place in
order to ensure that they can convert code into live applications in
a stable and repeatable way.

It’s a bit of a catch-all term, and can be broken down into different
areas. One of these is continuous integration, the process of building
and testing code at regular intervals to avoid bugs and accelerate
integration. Another is configurationmanagement (CM) — the set
of practices aiming to manage the runtime state of the applications.

60

http://nordicapis.com/how-to-catalyze-devops-with-continuous-integration-tooling-apis

The Present and Future of Configuration Management 61

What is Configuration Management?

Every application consists of one or more databases, web servers,
application servers, reverse proxies, load balancers, and other mov-
ing parts that need to work together at runtime to make a working
system.

Software configurationmanagement is the process of describing the
ways in which all these inputs — called artifacts or configuration
items — interact and how they leverage the underlying infrastruc-
ture. Specifically, it addresses the installation, configuration and
execution of configuration items on servers. Effective configura-
tion management ensures consistency across environments, avoids
outages, and eases maintenance.

Traditional configuration management required system adminis-
trators to write scripts and hand-maintain files listing technical
endpoints, port numbers, and namespaces. When the complexity of
a system increases, so does the configuration management process.
Artifact versioning, environment changes and tensions between de-
velopers and system engineers have led to increased infrastructure
automation.

CM in the Cloud

The advent of the cloud meant that servers were moved out of on
premise data centers and into those of cloud hosting vendors. While
the inherent complexities of running an on-premise infrastructure
disappeared, new problems arose as well.

Cloud technologies have enabled teams to deploy software to
hundreds if not thousands of servers concurrently to satisfy the
demands of software usage in the internet age. Managing that
many servers requires automation on a different scale, and a more
systematic approach. This is where an API-driven approach to

http://nordicapis.com/living-in-the-cloud-stack-understanding-saas-paas-and-iaas-apis/

The Present and Future of Configuration Management 62

CM can help — rather than installing and launching scripts on
each node, a centralized CM server could control all of the nodes
programmatically and drastically reduce the workload of the team’s
sysadmins.

New CM software tools have gradually been introduced in the last
decade to address these growing needs. In the next two sections
we’ll look at some of the most popular among them.

The Leaders: Puppet and Chef

Puppet and Chef are the most mature and the most popular CM
tools at the moment. The packaging and deploying of applications
used to be the sole province of system engineers. By enabling
developers to take part in this process, Puppet and Chef have
together defined a new category of CM solutions — infrastructure
as code.

Both are open source projects and based on Ruby (although signifi-
cant portions of the Chef architecture have been rewritten in Erlang
for performance reasons). They both have an ecosystem of plugin
developers as well as a supporting company offering enterprise
solutions. Each of them features a client-server architecture, with
a master server pushing configuration items to agents running on
each node.

Puppet

Puppet by Puppet Labs was founded by a system administrator
named Luke Kanies in 2005. It is built in Ruby but offers its own
JSON-like declarative language to create ‘manifests’ — the modules
in which configuration items are described, using high-level con-
cepts like users, services and packages. Puppet is “Model driven”,
which means that not much programming is usually required. This

https://puppetlabs.com/
https://www.chef.io/
https://twitter.com/puppetmasterd

The Present and Future of Configuration Management 63

makes Puppet a hit with system engineers with little experience in
programming.

Puppet compiles manifests into a catalog for each target system, and
distributes the configuration items via a REST API, so the dev teams
don’t need to worry about installing and running their stuff — all
configuration items will automatically be deployed and run on each
node as foreseen in the manifests. Instructions are stored in their
own database called PuppetDB, and a key-value store called Hiera.
Puppet is used at Google, theWikimedia Foundation, Reddit, CERN,
Zynga, Twitter, PayPal, Spotify, Oracle and Stanford University.

Chef

Chef was created by Adam Jacob in 2008, as an internal tool at
his company Opscode. Chef is generally developer-friendly and
very popular with teams already using Ruby. It lets developers
write ‘cookbooks’ in Ruby and stores the resulting instructions in
PostgreSQL. Chef is used at Airbnb, Mozilla, Expedia, Facebook,
Bonobos and Disney.

In both cases, a secure API is available to access any object within
Puppet or Chef rather than going through the command line
interface. For example, a developer can query the API of each of
these to find out how many active nodes are present, or build a
plugin for their favorite Continuous Integration system to trigger a
deployment every time a new version of the code is built.

A healthy ecosystem of developers have contributed numerous plu-
gins and extensions to both Puppet and Chef. Likewise, Puppet and
Chef plugins are also available for popular Continuous Integration
products servers like Jenkins, enabling direct integration between
the CI and CM processes. That way code builds that pass all the
required tests can be automatically delivered to target environments
without any manual intervention.

https://docs.puppetlabs.com/puppetdb/latest/
https://docs.puppetlabs.com/hiera/3.1/
https://wikimediafoundation.org/wiki/Home
https://www.reddit.com
http://home.cern/
https://www.zynga.com/
https://www.spotify.com
https://www.stanford.edu/
https://twitter.com/adamhjk
https://www.airbnb.com/
https://www.mozilla.org
https://www.expedia.com
https://bonobos.com/
http://nordicapis.com/how-to-catalyze-devops-with-continuous-integration-tooling-apis
http://nordicapis.com/how-to-catalyze-devops-with-continuous-integration-tooling-apis

The Present and Future of Configuration Management 64

The Contenders: Salt and Ansible

While Puppet and Chef dominate the CM landscape, several con-
tenders have emerged to cater for perceived weaknesses in their
architecture.

SaltStack

SaltStack is a relatively new CM tool built in Python and open
sourced in 2011. Used by PayPal, Verizon, HP and Rackspace,
Salt focuses on low-latency architecture and fault tolerance. It
features a decentralized setup, small messaging payloads, no single
point of failure, and parallel execution of commands for optimal
performance.

Ansible

Ansible, also open source and built in Python, was created by
Michael DeHaan in 2012. It was created in reaction to the relative
complexity of Puppet and Chef, and attempts to offer a simpler,
more elegant alternative, with a shorter learning curve.

Contrary to Puppet, Chef and Salt, Ansible is based on an agentless
architecture — meaning that no agent is required to run on each
infrastructure node, which leads to less complexity and less load on
the network. Ansible modules, referred to as units of work, can be
written with a variety of scripting languages like Python, Perl or
Ruby. Ansible lets users define playbooks in YAML for often used
system descriptions.

Ansible users include Apple., Atlassian, EA, Evernote, Twitter,
Verizon, NASA, Cisco and Juniper Networks.

Aside from Puppet, Chef, Salt and Ansible, there are many other
CM options, such as Capistrano and SmartFrog. Each one of them

http://saltstack.com/
https://www.rackspace.com/
https://www.ansible.com/
https://twitter.com/laserllama
https://www.atlassian.com/
http://www.ea.com/
https://evernote.com/
http://www.juniper.net/
https://github.com/capistrano/capistrano
https://www.smartfrog.com/

The Present and Future of Configuration Management 65

differentiates in a certain way. For example, Otter has a web based
user interface which lets you switch between a drag-and-drop
editor and text mode, along with first class support for Windows.

Cloud Vendor Solutions

Infrastructure-as-a-Service vendors like AmazonWeb Services come
with their own, highly specific concepts and terminology, and CM
tools need to speak that language to let DevOps people navigate
their product stack.

All of the above mentioned CM products have extensions for
Amazon EC2, and some of them have native support for Google
Compute Engine. Amazon has its own native configuration man-
agement product called OpsWorks which competes with Puppet
and Chef for applications entirely hosted on Amazon Web Services
(although OpsWorks itself is based on Chef internally).

Vagrant by HashiCorp is an open source tool to manage virtual
development environments (such as VMs and Docker contain-
ers) and wraps around CM tools. With Vagrant teams can create
portable development environments that can be moved between
hosts without any changes to the configuration.

In-House CM tools

Some companies have very specific requirements around CM that
are hard to meet by using one of the available products on the mar-
ket. Building a custom, fully-fledged configuration management
solution represents a great deal of work, but it can be worth it for
companies that have the means to see it through.

Netflix created their own configuration management API called
Archaius. Named after a species of chameleon, this Java and Scala-
based in-house tool lets Netflix perform dynamic changes to the

http://inedo.com/otter
https://aws.amazon.com/opsworks/
https://www.vagrantup.com/
https://github.com/Netflix/archaius

The Present and Future of Configuration Management 66

configuration of their Amazon EC2-based applications at run time.
It was open sourced in 2012.

Netflix had a variety of reasons for building an alternative to Puppet
or Chef. High availability is paramount to their business model, so
they can’t avoid any downtime related to server deployments. All
of their applications are designed in such a way that configuration
can be reloaded at run time.

In addition, Netflix servers span multiple environments, AWS re-
gions and technology stacks, which are collectively called ‘context’.
Thanks to Archaius, Netflix are able to enable/disable features
dynamically depending on their context.

The Present and Future of Configuration Management 67

Analysis: The Road Ahead

While the configuration management technological landscape has
greatly matured over the last few years, there is general con-
sensus that things will keep evolving in the future. The current
mainstream solutions are often viewed as too complicated, un-
forgiving and a hassle to maintain. One alternative to the classic
CM approach is the emerging immutable infrastructure cham-
pioned by (Docker)[http://nordicapis.com/api-driven-devops-spot-
light-on-docker].

Whereas regular configuration management aims to define and
manage state at run time, containerized applications require that
all the configuration be defined at build time. The resulting portable
containers can then bemoved from one host to the next without any
changes in state.

These states can then be saved in Docker images and used later
to re-spawn a new instance of the complete environment. Images
therefore offer an alternative means of configuration management,
arguably superior to runtime configuration management.

http://theagileadmin.com/2015/11/03/docker-service-management-trumps-configuration-management/

The Present and Future of Configuration Management 68

Another alternative is to hide the complexities of configuration
management with PaaS solutions like Heroku that deal with CM
under the hood and packages everything needed to run an applica-
tion in buildpacks. While less flexible than IaaS, it offers the luxury
of ignoring the CM process entirely.

It’s unclear where configuration management is headed, but one
thing is certain — it will remain one of the chief concerns of all
DevOps teams for the foreseeable future.

Security for Continuous
Delivery Environments

Continuous delivery is a hallmark of the modern development
world. As tools have matured and the needs of the consumer have
evolved, constant development and deployment have become the
norm rather than the exception.

With this increase in deployment, security has increased part and
parcel. In this chapter, we’re going to discuss how to maintain secu-
rity in such a unique deployment environment, and the challenges
inherent therein.

What Is Continuous Delivery?

Continuous delivery is the process by which developers push
consistent and timely updates via a deployment system. This is typ-
ically an automated system, wherein DevOps teams join ideation,

69

http://nordicapis.com/defining-the-emerging-role-of-devops/

Security for Continuous Delivery Environments 70

initial development, and deployment into a single, agile develop-
ment track.

There’s a lot to be said for this kind of delivery interaction. For one,
the system is far more agile to the needs of the market — because
delivery isn’t tied to a long-term cycle, features can be rapidly
developed and pushed through quality assurance as consumers
notify the developer of their needs.

This cycle change also means that when errors and bugs arrive,
they’re typically short-lived. Developers can rapidly address se-
curity concerns, bugs, and errors through additional patching and
deployment, reducing the effective life of issues in an API.

As part of this change to an automated and continuous development
cycle, there comes some caveats that prohibit more traditional
development. Most importantly, the common practice of manual
code auditing becomes unrealistic due to the sheer rapid agility of
development.

Not everything is “sunshine and rainbows”, though. Rapid and
continuous delivery has some caveats that developers need to
manage.

Chief of these is the fact that rapid and continuous development can
make feature creep easier to engage in. With ongoing incremental
releases, the “greater picture” is often lost, and feature creep be-
comes a legitimate issue. Likewise, constant continuous deployment
can also proliferate bugs that would otherwise be eliminated over
long-term testing and implementation.

These caveats are nothing compared to the benefits granted by in-
creasing agility and consumer interaction, but they allow a unique
perspective on development — continuous deployments inherently
require more consistent integrations — all of which need to be
secured properly.

http://nordicapis.com/what-makes-an-agile-api/

Security for Continuous Delivery Environments 71

Auditing Security

Thankfully, there are a number of ways an API provider can
audit and secure their APIs in a continuous delivery environment.
While each of these solutions are incredibly powerful, they are
generally best used for specific use cases — there is no “perfect”
implementation.

Code Scanning and Review

Code scanning — the automated process by which code is scanned
and checked for vulnerabilities — is an incredibly powerful tool
for auditing security. One of the most powerful features of code
scanning is the fact that, in most solutions, the code is checked
against common and known vulnerabilities, removing a lot of the
dependency based issues that plague rapid codebases.

Implementing this as a development procedure makes sense, but
even so, it’s often overlooked. When you submitted a final paper in
school, was it a first draft? Of course not, most students passed the
work through spell-check a hundred times, checked the grammar,
checked every single fact, checked their periods and commas, and
made sure everything flowed.

Accordingly, knowing how many people depend on the functional-
ity within, why would an API developer release a product without
first doing their own “spell-check”?

A lot of these solutions are additionally open source. While there’s
been a lot of discourse about open source security, and whether or
not it’s actually as powerful and useful as has been stated, the power
of collaboration makes having a crowd sourced, open database of
faults more powerful than having a closed, limited list of possibly
outdated and irrelevant references.

https://www.owasp.org/index.php/Source_Code_Analysis_Tools
http://nordicapis.com/why-api-devs-love-github/
http://nordicapis.com/why-api-devs-love-github/

Security for Continuous Delivery Environments 72

Creating a Clean Ecosystem

Code scanning can only go so far, however — for many develop-
ment teams, the devil’s in the details. Establishing a secure and
stable development and operations platform is just as important as
scanning code for common issues.

There seems to be a disconnect in most DevOps systems where
the development and operations clusters are far removed from one
another. What this ultimately results in is a system where hotfixes
are applied to properly functioning code on one cluster to get it to
work on another cluster.

While this is fine for the basal requirement, it’s terrible for security,
as it often introduces new, unique errors and faults that would
otherwise not exist without this cluster discrepancy.

As crowdsourcing has become more accepted by the mainstream,
there have been more and more tools introduced to the market that
harness the power of the group to produce some amazing results.

One such tool in the security space, Evident.io, utilizes crowd-
sourced environment and protocol registers to intelligently analyze
code, reducing complexity to understand analytics. These analytics
are then used to pinpoint attack vectors, expose common issues, and
clarify security issues that can be hard to see.

Adopting More Effective Development
Strategies

The adoption of two-speed IT as a production principle is also
incredibly powerful for both production and security. In this ap-
proach, two “lanes” are formed — rapid beta development and static
release development.

In this approach, the rapid beta development is where new features
are crafted and implemented, whereas the static release develop-

http://evident.io/
http://nordicapis.com/3-ways-to-build-microservices/#two-speedittwolanesfortwopurposes

Security for Continuous Delivery Environments 73

ment track focuses on releasing products that meet need require-
ments and are stable.

Positioning separate tracks helps ensure security in a continuous
environment as it allows for an opt-in channel for experimental and
beta features without impacting the stable track. The security for
the opt-in track does not necessarily need to be as intense as the
stable track, as the de jure principle is certainly “caveat emptor”.

That being said, implementing future features in a low security
environment can help pinpoint the holes in the armor that might
otherwise be obscured when implemented in a high security envi-
ronment.

Segmentation of Services

While creating a “unified” experience for developers has long been
the rallying cry of most API proponents, in some cases, it is actually
better to segment services, especially in the case of security and
auditing.

Consider the following example. An API provider has created a
“unified” API that combines data processing, media conversion, and
large file transfer between servers, clients, and users. Each update
to code requires a long-term audit, with multiple teams using the
same code base.

What are the problems with this application? Well, first of all,
we have multiple teams utilizing the same general codebase and
applying specific solutions therein. The best operations schematic
for the Media Conversion Team may not necessarily be best for the
Data Processing Team, and certainly not for the Large File Transfer
Team. With each new code fix, the code bloats, and different teams
implement solutions that are contradictory in nature. Even with the
teams conversing directly, this is inevitable.

What’s the solution? Segmentation. With segmentation, devel-
opers take functionality and divide the API along those lines.

http://nordicapis.com/api-security-equipping-your-api-with-the-right-armor/

Security for Continuous Delivery Environments 74

Essentially, a “main” API is developed to unify the functions in
these other, disparate APIs, allowing individual APIs to be formed
for specific use cases and functionalities.

In such a development process, the API, which formerly looked like
this:

• Function API - Media Conversion, Data Processing, Large
File Transfer

Turns into this:

• Function API - API with general purpose calls, tying into:
• Media Conversion API - API specifically designed to con-
vert media for use in either Data Processing or Large File
Transfer;

• Data Processing API - API specifically designed for large
data processing for use in either Large File Transfer or Media
Conversion;

• Large File Transfer - API specifically designed to handle
the transfer of large files, including those generated from the
Media Conversion and Data Processing APIs;

By segmenting the API into various secondary APIs, each es-
sentially becomes its own development segment. By doing this,
security can be audited for each function, as the security needs of
each is drastically different.

Most importantly, segmentation results in secondary layers of
security. This creates a situation where, even if a hacker can break
through the “Function API”, additional gateways for each new
segment makes it almost impossible to actually get through the
security ecosystem.

http://nordicapis.com/securing-your-datastream-with-p2p-encryption/
http://nordicapis.com/api-gateways-direct-microservices-architecture/

Security for Continuous Delivery Environments 75

Analysis: Continuous Delivery Requires
Continuous Security

Continuous Delivery is an incredibly powerful implementation, but
it comes with its own issues and security concerns. While ensuring
users have the most up-to-date revisions of a code base can make
for more powerful interactions with that code base, it can also
necessarily increase the chance of code failure or lax security. The
solutions offered here are but few of the many solutions which can
be implemented to negate the concerns offered by the development
strategy.

Security for Continuous Delivery Environments 76

While adoption of some or even all of these security solutions might
seem a daunting prospect, the fact is that most API developers
should implement them regardless — nothing but good can come
from proper design approaches, segmentation, and code scanning.

Implementing Continuous Delivery is not only one of the best
solutions for API developers facing large development lifecycles
— it’s possibly the most powerful method for forming a strong
userbase and ecosystem.

API Testing: Using
Virtualization for Advanced

Mockups

Simulated environments are not a foreign concept in web de-
velopment. Especially for application programming interfaces —
APIs — that may need to create a simulation of their service for
testing purposes, virtualization is an option that can go beyond
your average API explorer or GUI.

Following the Dropbox API explorer enhcnacement release, now
Amazon has recently announced a mock integration feature to
their API gateway. Virtualization takes mock testing a step further,
allowing API calls and simulated responses to be coded into early
stage app development, enabling both API providers and API de-
velopers to gauge performance in quite fine-grained ways prior to
an official API launch.

And as web API development becomes more iterative and con-
stantly in flux (According to Michael Wawra of Twilio, your API
is never really finished), some providers are pushing simulation as
the solution to help keep an entire API platform agile.

77

http://www.programmableweb.com/news/dropbox-releases-api-explorer-to-test-api-calls/2015/08/21
http://www.programmableweb.com/news/amazon-announces-mock-integration-feature-api-gateway/brief/2015/09/03
https://www.youtube.com/watch?v=e3UwIiz5ad4
https://www.youtube.com/watch?v=e3UwIiz5ad4

API Testing: Using Virtualization for Advanced Mockups 78

What is Service Virtualization?

In the programming world, Service Virtualization is a method of
abstracting the behavior of cloud driven applications. “Mocking
on steroids,” virtualization doesn’t just mock a specific function,
it emulates the same performance as an end product would. De-
veloper operations can use virtual services to begin functional,
integration, and performance testing early on, rather than after an
official product launch.

Why virtualize a product? For physical products it may mean
avoiding a major recall. In his talk with Nordic APIs, Matti Hjelm
references LEGO’s failed Fun Snacks. Made in the shape of lego
bricks, parents became furious with LEGO for teaching kids to eat
things that look like identical to the normal LEGO bricks.

In hindsight, LEGO’s Fun Snacks lacked the proper user testing.
For web services, virtualization can similarly help with that quality
assurance aspect and simulate actual behaviour, capture informa-
tion, and use feedback to replace or change components — hopefully
to avoid the choking hazard for developers and end users.

What is API Virtualization?

API virtualization allows you to isolate components and simulate
external, non-network based APIs. This runtime behaviour simula-
tion uses a tool in place of the real mcCoy — a virtual copy of your
API that mirrors behaviour of the final production version.

In web software, an error-free finished product is a daydream.
Instead, rapid (and continuous) development cycles occur that
need immediate testing. Next we’ll outline five benefits that API
virtualization can bring to the table.

https://en.wikipedia.org/wiki/Service_virtualization
https://se.linkedin.com/pub/matti-hjelm/1/313/727
http://consumerist.com/2008/06/19/kelloggs-lego-fun-snacks-sends-mixed-messages-to-your-child/

API Testing: Using Virtualization for Advanced Mockups 79

1: Test Failure in a Safe Environment

Want to see how error messages function? How rate limits work?
From a user’s perspective, a virtual API looks and behaves like a
real service. However, distanced from live runtime, virtualization
can be used for simulating drastic scenarios. Use an emulator to
simulate real world behavior like downtime, slow or erratic API
responses to see how an app behaves when confronted with these
dilemmas.

A great test can provide the information on what happens when a
client calls an API that suddenly responds strangely, and do so in a
neutral, risk-free setting.

2: Increase Development Productivity

Dependency injection is a messy situation, and writing mocks are
useless for developers in the long run. API virtualization allows
the ability to reduce redundancies in the development cycle and
emphasize a more seamless continuous integration process.

Desktop Software Maturity Stages

According to Matti Hjeml of SmartBear, typical desktop software
can be said to have a development lifecycle made up of these stages:

• 1: The technology stage. You develop your core functionality
with a simple, non-cluttered User Interface (UI).

• 2: To stay ahead of competitors or in response to customer in-
quiries, features are added. Design may become 2nd priority
in this stage, leading to UI clutter.

• 3: Customers ask for simplicity in response to a cluttered UI.

http://www.infoq.com/news/2013/04/Service-Virtualization
http://nordicapis.com/speakers/matti-hjelm/
http://smartbear.com/
http://nordicapis.com/api-lifecycle-development/

API Testing: Using Virtualization for Advanced Mockups 80

• 4: Software becomes a commodity, and integrates with other
software, plugins, or other tools through the use of embed-
dables, plugins, SDKs, etc.

API Market Stages

Hjmel sees a very similar development cycle within the API market:

• 1: Unique feature set, hard to use?
• 2: Add features to keep competitors behind
• 3: Improve DX to keep 3rd party devs coming back

A significant aspect of stage three, improving developer experience,
is serving the API with the proper testing environments. Whether
with interactive documentation, sandbox, or virtual API, having
a way to test an API is an important cog to complement your
developer ecosystem.

3. Isolated Performance Testing Saves
Money

In normal app development practice, you may simulate other APIs,
but in the process become too independent, using mock code
that mimics the API that you don’t have control of yourself. By
virtualizing your own API, API platform providers can erase these
type of headaches, and allow more sharing with the API developer
users. However, this must be done with tact.

Share Testing Environment

Why don’t you simply share a testing environment running on
internal servers with the user? According to Hjelm,

http://nordicapis.com/why-api-developer-experience-matters-more-than-ever/

API Testing: Using Virtualization for Advanced Mockups 81

“The problem is that in this new economy user needs
are unpredictable. It’s not like the SOA world where
you had control of which were the users and when
they were allowed to use your system… There is no
predictability when and where the API calls are com-
ing from and how much.”

If general usage is unpredictable, most likely the testing is unpre-
dictable as well. The bandwidth cost for large random testing can
be a strain on an API provider’s server. So…

Encourage Local Testing

To combat this problem, Hjelm encourages providers to “build
shareable and distributable virtualized versions of your API.” This
can simplify testing locally, and empower developers with auton-
omy and control. It still shows an active engagement from the plat-
form owner in third party testing, integration, and development.

Running test servers can be costly, and demands for performance
testing are largely unknown in early stage development. If the
micro costs incurred for API calls are adding up, an API developer
could savemoney using a virtualized API, rather than performance
testing on the production version.

4. Reduce Time to Market

APIs are distinct from normal products, as potential revenue relies
on a long, two-product lifecycle. First is the API product lifecycle
itself, in which one must plan, develop, and form an ecosystem
of developer consumers. After this tremendous feat, APIs rely on
developers to create successful apps before a significant quantity of
calls are made (and income generated for the API provider).

API Testing: Using Virtualization for Advanced Mockups 82

By using virtualization techniques, however, this cycle can be
significantly cut down. By offering a virtual API in a continuous
development mode, third party developers can start building appli-
cations before the actual endpoint is live. This could significantly
reduce the time from when the API is developed to the first call
being made by an end user within a third party application.

5. Virtualization Can be Usable

A virtual API must emulate the core functionality of your normal
API, and more. It should be able to simulate awkward behaviour,
or slow response time — natural occurrences, and respond with
typical error messages. It should be easily configurable, supporting
security with OAuth 2. As Hjelm says, design your virtual API as
data driven, distributable, and deployable locally.

“By recording and storing known answers to pre-
dictable requests, then simulating the service and play-
ing back known (“canned”) data, API Virtualization
allows build systems to do more, with faster, more
predictable results. This does not remove the need for
end-to-end testing, but it does allow the team to have
more confidence with each build.”
— Matthew
Heuser

One may think that this is a difficult process, but it can be im-
plemented in a few steps. In a previous post, we used SmarBear’s
ReadyAPI service to mock the endpoint of a REST API and create a
virtual service in about 20 steps.

https://dzone.com/articles/patterns-api-virtualization
https://dzone.com/articles/patterns-api-virtualization
http://nordicapis.com/walkthrough-creating-virtual-service-ready-api/

API Testing: Using Virtualization for Advanced Mockups 83

Safe Harbor: Drawbacks, Risks, and
Mitigations

• Virtual Insanity: There is the risk that the production API
won’t match the virtual API that has been used for testing.
Teams must have automated checks in place for end-to-end
testing when using the production API.

• Analytics: How do I analyze usage patterns? You can use in-
app Google Analytics.

• Complex Maintenance: According to Hjelm, it shouldn’t be
hard to maintain a virtual API, as APIs deliver simplistic
views of complexity.

“Virtualize Me” -Your API

Virtualizing your test environment, and doing so often, and early
on, can accelerate rapid development cycles, and increase internal
productivity. Some argue that the future will see the emergence of
more Sandbox-as-a-services and complex simulation environments.
As Kin Lane says:

“I’m seeing services emerge to cater to this need, as
with Sandbox, which is a service layer of the API
lifecycle I think will only grow in coming months. I
can see the need to create simple sandbox for any APIs
as you are kicking tires, but I can also see the need for
sophisticated simulation environments built on top of
common APIs, allowing some apps to test out more
advanced, and specialized scenarios.”

https://getsandbox.com/
http://apievangelist.com/2015/07/11/i-wish-all-apis-had-sandbox-environment-by-default/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+ApiEvangelist+%28API+Evangelist+-+Blog%29

API Testing: Using Virtualization for Advanced Mockups 84

Analysis: Benefits in API Virtualization

API virtualization allows quickly curated versions of the API for
your developer ecosystem to emulate immediately. To review, the
benefits of API virtualization can include:

• Increased overall productivity
• Shorter time to market
• A true environment for third-party sandboxing
• Test real world scenarios without the risk
• Eliminate the need for individual developers to write and
rewrite their own mocks

API Testing: Using Virtualization for Advanced Mockups 85

Other Resources on API Virtualization,
Sandboxes:

• Walkthrough Creating a Virtual Service Ready API, Nordic
APIs

• Patterns of API Virtualization
• What is API Virtualization?
• What is an API Sandbox?
• API Virtualization, Sam Ramji
• I Wish all APIs had Sandbox Environment by Default, API
Evangelist

• Virtualized API Stacks, API Evangelist
• Sandbox
• RESTful API Design: API Virtualization, BrianMulloy | Apigee
• Service Virtualization as an Alternative to Mocking

http://nordicapis.com/walkthrough-creating-virtual-service-ready-api/
http://nordicapis.com/walkthrough-creating-virtual-service-ready-api/
https://dzone.com/articles/patterns-api-virtualization
http://smartbear.com/all-resources/articles/what-is-api-virtualization/
http://smartbear.com/all-resources/articles/what-is-an-api-sandbox/
http://samus.typepad.com/what/2010/06/api-virtualization.html
http://apievangelist.com/2015/07/11/i-wish-all-apis-had-sandbox-environment-by-default/
http://apievangelist.com/2015/07/11/i-wish-all-apis-had-sandbox-environment-by-default/
http://apievangelist.com/2013/01/28/virtualized-api-stacks/
https://getsandbox.com/
http://apigee.com/about/blog/technology/restful-api-design-api-virtualization
http://www.infoq.com/news/2013/04/Service-Virtualization

Automated Testing for the
Internet of Things

The Internet of Things (IoT) is upon us. Every object you see around
you — whether it’s your fridge, your electric toothbrush, your car,
even your clothes, are about to acquire a form of sentience.

Some of them already have. Fitbit watches, Nest thermostats and
Apple TVs are just the tip of the iceberg when it comes to the
Internet of Things. Sensors, embedded systems and cloud back-
ends are coming together to bestow smartness upon a bewildering
array of previously inanimate, dumb objects. IoT will be a trillion-
dollar market by 2020 and every big player in the hardware space
is jockeying for position, along with a flood of new IoT startups.

While embedded systems have been around for a very long time
in the form of consumer electronics, IoT has given them a new
dimension. Previously these systemswere essentially self-contained
and could work in isolation. But connected objects now need to

86

http://www.digitaltrends.com/wearables/smart-clothing-is-the-future-of-wearables/
http://blogs.wsj.com/cio/2015/06/02/internet-of-things-market-to-reach-1-7-trillion-by-2020-idc/
http://blogs.wsj.com/cio/2015/06/02/internet-of-things-market-to-reach-1-7-trillion-by-2020-idc/

Automated Testing for the Internet of Things 87

converse with each other and rely on each other. Developers have
had to start thinking about device-to-device (D2D) and device-to-
server (D2S) communication and of course human interaction that
comes into play as home appliances and a host of other everyday
objects essentially become an extension of the Internet.

IoT and Testing

In traditional software development, code can be built and tests
can be automated in production-like environments. The modern
approach that makes this process repeatable and predictable is
called Continuous Integration. Its purpose is to promote code qual-
ity, catch bugs early, reduce the risk of regressions and accelerate
development iterations. It is very mature in the web development
space, and increasingly so in mobile app development as well. In
fact, test automation is so ingrained in the mind of developers that
many have changed their entire approach to programming, favoring
test-driven development — a paradigm where testing drives code
design and development, rather than the other way around.

Though things are increasingly complicated in the embeddedworld,
the end user’s expectations are the same — modern systems should
just work. As the recent Nest thermostat dysfunctions have taught
us, IoT products are not yet as robust as their more traditional
counterparts. To fix this IoT vendors are moving to integrate better
continuous integration into their daily practices.

Until recently continuous integration had never been a fixture
of embedded software development, mostly because the interplay
between hardware and software made things more difficult.

http://nordicapis.com/reach-devops-zen-with-these-continuous-integration-tools/
http://www.nytimes.com/2016/01/14/fashion/nest-thermostat-glitch-battery-dies-software-freeze.html

Automated Testing for the Internet of Things 88

What Makes IoT Applications Harder to
Test

Agile methodologies require a different approach when hardware is
involved. More up front design is required, and discarding previous
iterations of the product comes at a greater cost than in purely
software projects. At the very least, iteration times are longer.

One assumption that needs to be verified in order to achieve con-
tinuous integration in the IoT is the possibility of test automation.
While it can be achieved in the embedded space, a number of
hurdles need to be overcome. It isn’t as easy to isolate code because
of the dependencies to the underlying hardware that can hardly be
overlooked.

IoT systems are composite applications that need:

• The ability to gather sensor data by reacting to a variety of
inputs like touch, voice and motion tracking

• Different types of interoperating hardware, some of them
well-known likeArduino boards or Raspberry Pi, othersmore
unusual or context-specific, like a smart coffee machine,
video camera or oven

• Cloud-based servers, mobile andweb applications fromwhich
the devices can be monitored and controlled

• A Device API to enable routine data and device diagnostics
pulls to cloud servers, as well as functionality manipulation.

To complicate things even further, IoT comes with its own protocols
like MQTT, CoAP and ZigBee in addition to Wi-Fi and Bluetooth.
Furthermore, embedded systems are subjected to regulatory re-
quirements such as IEC 61508 and MISRA to ensure the safety and
reliability of programmable electronic devices.

Programming languages used in embedded systems tend to be
either C or C++. These languages, more low-level than those used in

https://www.arduino.cc/
https://www.raspberrypi.org/
https://www.nespresso.com/uk/en/pages/prodigio-machines-range
http://www.logitech.com/en-us/product/circle
https://juneoven.com/
http://mqtt.org/
https://en.wikipedia.org/wiki/Constrained_Application_Protocol
http://www.zigbee.org/
http://www.iec.ch/functionalsafety/
https://en.wikipedia.org/wiki/Low-level_programming_language

Automated Testing for the Internet of Things 89

web development, typically imply better runtime performance but
longer programming lead times and more hassle due to the need for
explicit memory management, not to mention less available talent.
Lack of code portability means that cross-compilation is required
between development and target environments.

Independent Greenfield projects are relatively rare in embedded
software — projects often have dependencies on monolithic legacy
code into which CI principles are difficult to retrofit. Similarly, sub-
systems of IoT applications are often owned by different vendors.
What happens if a bug is found in a vendor-supplied device that the
application setup depends on?

Exhaustive test data, including telemetry data, can be difficult to
obtain for IoT projects since it depends on real world situations
where things like weather conditions and atmospheric pressure can
influence outcomes.

Finally, non-functional requirements tend to be difficult to test
against in systematic ways. These requirements can revolve around
bandwidth limitations, battery failures, and interferences.

Simulations, Quality Assurance and
other Approaches

Despite the problems listed in the previous section, teams building
the future of IoT are trying to achieve systematic, repeatable, and
regular release processes in the embedded world.

Part of the guesswork around test planning can be limited by
making familiar choices where possible in the architecture. One
example is to use Linux for all embedded software projects, so that
at least the operating system layer remains predictable. In general,
the ability to decouple programming logic from hardwaremakes for
easier subsystem testing. Also, focusing early efforts on prototypes

http://readwrite.com/2016/04/06/linux-founder-speaks-iot-pl4/

Automated Testing for the Internet of Things 90

or low-volume first iterations can help chip away at the guesswork
and ease further planning.

To mitigate problems around test data quality, IoT profession-
als record input data from real world users and environmental
data, to be replayed in test environments. This helps to keep test
environments as production-like as possible. Compliance testing
against regulatory requirements can be partially automated using
static analysis tools. DevOps automation solutions like Electric
Accelerator include these types of checks out of the box.

But mostly, modern approaches to testing composite applications
featuring embedded software involve some form of simulation.
Much like the way mobile app developers use emulators like Per-
fecto and Sauce Labs to recreate test conditions across a variety
of smartphones, embedded software developers resort to simula-
tion software to abstract away parts of their continuous testing
environments. In particular, simulations resolve the problems of
hardware availability and accelerate tests against various versions,
screen sizes, and other hardware properties.

These virtualized environments are specific to each application and
tend to be expensive to set up, but as is the case in traditional
continuous integration, the initial effort pays back for itself many
times over as the project’s life extends. Not only do they afford
much more flexibility in test setups and scale, but they help put
testing at the center of the team’s preoccupations.

A hardware labwill usually follow theModel-Conductor-Hardware
(MCH) design pattern. The Model defines the abstract logic un-
derpinning the system, holds the system’s state and exposes an
API to the outside world. The Conductor is a stateless component
that orchestrates the bidirectional interplay between the Model
and the Hardware. The Hardware component serves as a wrapper
around the physical hardware. It triggers or reacts to events by
communicating with the Conductor.

In a virtual hardware lab, the Hardware and the outside world (and

http://electric-cloud.com/solutions/embedded/iot/
http://electric-cloud.com/solutions/embedded/iot/
https://www.perfectomobile.com/
https://www.perfectomobile.com/
https://saucelabs.com/
http://nordicapis.com/5-benefits-of-using-virtualization-to-test-your-api/

Automated Testing for the Internet of Things 91

its relationship to the Model) are replaced by a simulation so that
the entire setup becomes purely software-based. A small number of
vendors have built simulation offerings like Simics by WindRiver,
which offers virtual target hardware that can be modified or scaled
at will.

These simulators are becoming increasingly sophisticated, support-
ing performance and memory testing, security testing, and they
even allow for edge case tests and fault injection, like dropped
connections or electromagnetic interference creating noise in sensor
data.

Nevertheless, a decent quality assurance process using real hard-
ware is still necessary at the tail end of each major testing cycle.
There are several reasons why teams may never rely entirely on
simulations. For one thing, errors and approximations in the simula-
tion can cause imperfections that must be caught before shipping. In
addition, human interaction testing and emergent behaviors can’t
be simulated, and a person’s emotional response to even a perfectly
functional hardware-enabled system can be difficult to predict. A
combination of white-box testing and black-box testing is usually
employed during the QA phase to detect problems that might have
fallen through the simulation’s cracks.

New Frontiers

In the age of the Internet of Things, slow testing cycles and poorly
tested products are no longer sufficient. Companies have adapted
their internal processes to reflect these new expectations to thrive
with products blending state-of-the-art software and hardware.

Smart objects like unmanned aerial drones will be subjected to deep
scrutiny and regulations, and users will become less accepting of
glitches in their smart home appliances. More companies will offer
IoT-specific testing software, like SmartBear whose Ready! API

http://www.windriver.com/products/simics/?utm_source=Blog&utm_medium=Blog&utm_campaign=Simicspg
https://smartbear.com/solutions/internet-of-things/

Automated Testing for the Internet of Things 92

solution enables API testing with support for MQTT and CoAP. As
a side effect, test automation job opportunities will likely increase
in the embedded world, creating new career prospects for engineers
who straddle the line between software and hardware.

Expectations around new software deployment and availability of
new capabilities on existing hardware have been greatly increased
by recent advances in mobile and automotive firmware delivery
processes. Until recently, buying any electronic device constituted
a decreasing value proposition — the device would gradually lose
value over time and consumers would be pressured to buy new
versions of the hardware to benefit from new features.

But Over The Air (OTA) updates of firmware has changed that.
OTA is a deployment method where software updates are pushed
from a central cloud service to a range of devices anywhere in the
world typically via wi-fi but also via mobile broadband, or even
IoT-specific protocols like ZigBee.

Smartphones were the first connected devices to feature OTA
updates, leading to longer-lived devices and a diminished feeling of
planned obsolescence. Cars came next — Tesla famously designs
their cars so that software upgrades can fix problems and enable
new capabilities via OTA updates. This requires careful planning
and a systematic approach to software delivery. One recent is
example is the auto-pilot feature on the Tesla Model S that was
made available to existing cars after an OTA update. The cars had
already been equipped with all the hardware necessary for the
autopilot to function (cameras, sensors, radar), and a pure software
update was then enough to enable the new feature.

The fact that they are able to confidently ship these changes to a
product like a car, for which safety and usability are paramount,
speaks volumes about the level of planning and test automation
that they’ve put in place. The sensitiveness of these updates will
only increase in the era of self-driving vehicles, when artificial
intelligence will replace humans at the controls.

http://www.wired.com/insights/2014/02/teslas-air-fix-best-example-yet-internet-things/
http://www.wired.com/insights/2014/02/teslas-air-fix-best-example-yet-internet-things/
http://www.wired.com/2015/10/tesla-self-driving-over-air-update-live/

Automated Testing for the Internet of Things 93

Tesla can’t fix everything with OTA updates — it has had to
physically recall large numbers of cars for problems in the past,
but this powerful new delivery method has given customers the
expectation that the product they buy will improve over time.

http://www.engadget.com/2015/11/20/tesla-model-s-recall/

Automated Testing for the Internet of Things 94

Analysis

OTA support must be built
into all the supported de-
vices, and IoT vendors need
to do careful version man-
agement and testing in sim-
ulated environments in order
to achieve seamless delivery
in this way. To avoid long

roll out times only the smallest possible delta files should be
delivered via OTA updates, and security can be an issue as well.
Companies like Redbend and Resin offer device management and
OTA update workflow solutions to IoT customers.

The Internet of Things promises to change the way we relate to ob-
jects all around us, but the high expectations set by companies like
Apple and Tesla will require IoT companies to evolve and elevate
the culture of testing in consumer electronics to new standards.

http://www.redbend.com/en/solutions/iot/wearable-device-software-management/overview
https://resin.io/

Final Thoughts

Continuous integration is part of the agile development method-
ology that is making the web run more efficiently. Throughout
this volume, we’ve covered how the union of development and
operations can help producemore iterative life cycles, allowing both
beta tests and launched products to realize their potential. With De-
vOps tooling for functional testing, code generation, configuration
management solutions, andmore being programmable via APIs, the
entire DevOps process is becoming an APIOps process.

We hope you enjoyed this volume. For more, subscribe to our
newsletter for a refined digest dedicated to helping you make
smarter tech descisions with APIs. We publish new articles on our
blog every week, and also hold events that bring together API
practitioners to talk strategy.

Hope to connect with you in the future,

• Nordic APIs team

95

http://nordicapis.com/newsletter/
http://nordicapis.com/newsletter/
http://nordicapis.com/blog
http://nordicapis.com/event-calendar/

Final Thoughts 96

More eBooks by Nordic APIs:

The API Economy: Tune into case studies as we explore how agile
businesses are using APIs to disrupt industries and outperform
competitors.

The API Lifecycle: An agile process for managing the life of an API
- the secret sauce to help establish quality standards for all API and
microservice providers.

Programming APIs with the Spark Web Framework: Learn how to
master Spark Java, a free open source micro framework that can be
used to develop powerful APIs alongside JVM-based programming
languages.

Securing the API Stronghold: The most comprehensive freely avail-
able deep dive into the core tenants of modern web API security,
identity control, and access management.

Developing The API Mindset: Distinguishes Public, Private, and
Partner API business strategies with use cases from Nordic APIs
events.

Nordic APIs Conference Talks

We travel throughout Scandinavia and beyond to host talks to
help businessess become more programmable. Be sure to track our
upcoming events if you are ever interested in attending or speaking.
Here are some examples of sessions from previous events:

• Introducing The API Lifecycle, Andreas Krohn
• You Need An API For That Gadget, Brian Mulloy

http://nordicapis.com/api-ebooks/the-api-economy/
http://nordicapis.com/api-ebooks/the-api-lifecycle/
http://nordicapis.com/api-ebooks/programming-apis-with-the-spark-web-framework/
http://nordicapis.com/api-ebooks/securing-the-api-stronghold/
http://nordicapis.com/api-ebooks/developing-the-api-mindset/
http://nordicapis.com/event-calendar/
https://www.youtube.com/watch?v=Hc-lDZALeXQ
https://www.youtube.com/watch?v=ogrHFkLIIAk

Final Thoughts 97

• Pass On Access: User to User Data Sharing With OAuth,
Jacob Ideskog

• APIfying an ERP, Marjukka Niinioja
• Integrating API Security Into A Comprehensive Identity
Platform

• A Simpler Time: Balancing Simplicity and Complexity, Ron-
nie Mitra

• The Nuts and Bolts of API Security: Protecting Your Data at
All Times

https://www.youtube.com/watch?v=CU5ptUHQeBo
https://www.youtube.com/watch?v=CU5ptUHQeBo
https://www.youtube.com/watch?v=ZyVGvMVBk6U
https://www.youtube.com/watch?v=dl0jD29XkK4
https://www.youtube.com/watch?v=dl0jD29XkK4
https://www.youtube.com/watch?v=mJnKXY2jj6E
https://www.youtube.com/watch?v=mJnKXY2jj6E
https://www.youtube.com/watch?v=tj03NRM6SP8
https://www.youtube.com/watch?v=tj03NRM6SP8

Endnotes
Nordic APIs is an independent blog and this publication has
not been authorized, sponsored, or otherwise approved by
any company mentioned in it. All trademarks, servicemarks,
registered trademarks, and registered servicemarks are the
property of their respective owners.

Nordic APIs AB Box 133 447 24 Vargarda, Sweden

Facebook | Twitter | Linkedin | Google+ | YouTube

Blog | Home | Newsletter | Contact

98

http://facebook.com/nordicapis
http://twitter.com/nordicapis
https://www.linkedin.com/company/nordic-apis
https://plus.google.com/u/0/+Nordicapis/posts
https://www.youtube.com/user/nordicapis
http://nordicapis.com/blog/
http://nordicapis.com
http://nordicapis.com/newsletter/
mailto:info@nordicapis.com

	Table of Contents
	Preface
	Defining the Emerging Role of DevOps
	What is DevOps?
	Why DevOps is Powerful
	Implementing DevOps
	DevOps Tools
	DevOps as a Career
	Analysis: Less Uptime Sacrificed for new Features

	10 Continuous Integration Tools to Spur API Development
	Abao
	DHC
	Dredd, by Apiary
	APIMATIC
	Chakram
	Runscope
	SmartBear TestComplete Platform
	Swagger Diff
	Analysis: CI is a Growing Presence in the API Economy

	Reaching DevOps Zen: Tracking the Progress of Continuous Integration
	Traditional CI
	CI in the cloud
	Mobile CI
	Future of CI
	Analysis: CI is a Mainstay for Development

	Introducing Docker Containers
	What is Docker?
	Why Docker?
	Simple Docker Commands
	Caveat Emptor
	Analysis: Use Docker in the Right Scenario

	Digging into Docker Architecture
	Virtual Containers
	Docker Architecture
	Who uses Docker?
	Where does Docker fit in the DevOps puzzle?
	Up Next: Tooling Built on Docker Remote API

	Tools Built on Top of the Docker API
	Dogfooding
	Scheduling
	Cluster Management
	Service Discovery
	Networking
	Storage
	Continuous Integration
	Hosted Docker Registries
	Log Aggregation
	Monitoring
	Configuration Management
	Security Auditing
	PaaS
	Full-blown OS
	Analysis: Remote Docker API Demonstrates Automated DevOps in Action

	Description-Agnostic API Development with API Transformer
	Where API Transformer Fits
	Example Use Case
	Analysis: The Value of API Transformer

	The Present and Future of Configuration Management
	What is Configuration Management?
	CM in the Cloud
	The Leaders: Puppet and Chef
	The Contenders: Salt and Ansible
	Cloud Vendor Solutions
	In-House CM tools
	Analysis: The Road Ahead

	Security for Continuous Delivery Environments
	What Is Continuous Delivery?
	Auditing Security
	Analysis: Continuous Delivery Requires Continuous Security

	API Testing: Using Virtualization for Advanced Mockups
	What is Service Virtualization?
	What is API Virtualization?
	1: Test Failure in a Safe Environment
	2: Increase Development Productivity
	3. Isolated Performance Testing Saves Money
	4. Reduce Time to Market
	5. Virtualization Can be Usable
	Safe Harbor: Drawbacks, Risks, and Mitigations
	“Virtualize Me” -Your API
	Analysis: Benefits in API Virtualization

	Automated Testing for the Internet of Things
	IoT and Testing
	What Makes IoT Applications Harder to Test
	Simulations, Quality Assurance and other Approaches
	New Frontiers
	Analysis

	Final Thoughts
	Endnotes

