

How to Successfully Market
an API
Fine-Tuning Developer Relations &
Platform Advocacy

Nordic APIs

© 2016 - 2022 Nordic APIs

Contents

Supported by Curity . i

Preface . ii

Part One: Planning 1

Building from the Ground Up: Tips for Starting Your API
Program . 2
Clarify Your Needs . 3
Get Buy In (From Everyone) 4
Aim for a Public MVP . 5
Act on Feedback . 7
Build your Practice . 8
Final Thoughts . 9

Define Your Target Developer Audience 10
Why Create a Developer “Persona”? 11
The Developer Brain . 12
But Plenty of Other People Are Interested in APIs, Too! . 13
Expanding our Portal: Developer End User Evangelism . 14
Varying Industry Backgrounds 15
Location & Demographics 16
API Use Cases . 17
Technology Preferences 18
Lessen The Corporate Branding 18
Developer Experience . 20

CONTENTS

Build it And They Will _____ 20
Understand Your Audience 21

Developer Experience is a Key Ingredient of Quality APIs 22
API Model Canvas – offspring of Lean Canvas 23
Developers are the Rockstars of the API Economy 24
Addressing the Entire API Model Canvas 26
Case Study: National Library of Finland 26
MVP for next step . 27
Gain speed and make it fun 28
Final Thoughts . 28

Part Two: Developer Relations . . 30

Ingredients That Make Up a Superb Developer Center . . 32
Getting Started Guide . 33
Authentication Guide . 33
API Documentation . 35
Testing Environment . 36
Developer Resources . 37
Support Channels . 38
Platform Policy . 40
Cater Your Home Presence to Non-Developers Too . . . 40
Final Thoughts . 41

Crafting Excellent API Code Tutorials that Decrease On-
boarding Time . 43
Setting the Context . 44
Exploring the Details . 45
Creating an Application 47
Final Thoughts . 48

What is the Difference Between an API and an SDK? . . 49
Define: API . 49
Define: SDK . 51

CONTENTS

Squares and Rectangles 51
Examples . 52
Apples and Oranges . 57

Developer Resources: SDKs, Libraries, Auto Generation
Tools . 58
What Are Helper Libraries? 58
Why Not Just Let Them REST? 59
Data Problem . 60
Programming Language Trends 61
Discover What Languages Your Consumers are Using . . 62
Who Should we Model? 63
HTTP is Language Agnostic 65
5 Tips for Helper Library Design 65
Last Line of API Code: Your API is Never Really Finished 66

A Human’s Guide to Drafting API Platform Policy 67
Key Themes . 68
Defining Responsibilities 69
Setting Expectations . 70
Describing Good Behaviors 71
Final Thoughts . 72

Creating A Brand Guide for Your API Program 74
Platform Strategy Dictates Brand Requirements 75
Brand Guide Components 76
Formatting Your Design Guide 83
The Effect of Zero or Poor Branding Guidelines 83
Final Thoughts . 84
Examples of API Branding Guides in the Wild: 85

Part Three: Promotion 86

Perfecting Your API Release 88
What do I release? . 88

CONTENTS

Time Your Release . 89
Widen Your Potential Audience 89
Have the Right Monetization plan 89
Have a Demo . 90
Have Awesome Branding 90

Tips to Make Your API More Discoverable 91
SEO Approach: Optimization of API Homepages 92
Service Discovery Automation 94

Cheat Sheet of 10+ API Directories to Submit Your API to 97

Important Press Networks and Developer Channels in
the API Space . 101
Press Release Distribution 101
API-Specific Blogs, Thought Leaders, and Digests 102
General Tech & Developer News 102
Nordic Tech Press/News 103
Social Bookmarking . 103
API Events . 103
The Everpresent Commentator 104

Utilizing Product Hunt to Launch Your API 105
Alpha, Closed Beta, Open Beta, or Full Release? 106
Preparing for a Release 107
Offering Exclusive Deals: The Gold Star 109
Actually Submitting a Profile on Product Hunt 110
The Launch: Introduce Yourself, Play Nice, Get the Word

Out . 112
The Unanticipated Launch 113
The Return on Investment 114
The Internet’s Watercooler is Product Hunt 114
Resources . 115

CONTENTS

Part Four: Advocacy 117

Day in the Life of an API Developer Evangelist 119
8 Important Job Roles of a Software Evangelist 120
What does an Evangelist do each day? 127
Evangelism vs Advocacy 128
Q&A Section . 129
Conclusion . 133
Interviewees: . 133

How to Offer Unparalleled Developer Support 134
The Importance of Developer Outreach 134
Email and Social Media 136
Event Hosting and Attendance 138
Documentation and Knowledge Bases 139
Conclusion . 141

Accumulating Feedback: 4 Questions API Providers Need
to Ask Their Users . 142
Why Feedback is Important 143
What Do You Expect From This API? 144
What Is Your Greatest Frustration with the API? 146
Why Did You Choose Our API? 147
If You Could Change Our API, How Would You? 148
Methods to Use for Accumulating Feedback 149
Think As a User . 152

How to Hold a Killer First Hackathon or Developer Con-
ference . 154
Types of Get-Togethers 155
What is a Hackathon? . 155
What is a Developer Conference? 156
What’s the Difference? . 156
How to Host an Event . 157

What Makes an API Demo Unforgettable? 164

CONTENTS

1: Describe the API, in a few words. 165
2: Convince we all share the same values of the API . . . 165
3: Impress with how great and easy your API is 166
4: Interact with the audience 166
5: Live coding mastery . 167
6: A theater-like script . 168
Preparation for potential technical flaws 168
Conclusion . 169

Case Study: Twitter’s 10 Year Struggle with Developer
Relations . 170
2006 - 2010: The early days 170
2010 - 2012: OAuthcalypse, competing with third party

apps and other perceived betrayals 171
2012 - 2013: Token limits and open war on traditional

clients . 173
2013 - Present: Post-IPO controversies 173
Wooing back developers 174
New releases and optimism going forward 175
Other social networks . 176

Review . 179

TL;DR Checklist . 180

Endnotes . 182

CONTENTS i

Supported by Curity

Nordic APIs was founded by Curity CEO Travis Spencer and has
continued to be supported by the company. Curity helps Nordic
APIs organize two strategic annual events, the Austin API Summit
in Texas and the Platform Summit in Stockholm.

Curity is a leading provider of API-driven identity management
that simplifies complexity and secures digital services for large
global enterprises. The Curity Identity Server is highly scalable, and
handles the complexities of the leading identity standards, making
them easier to use, customize, and deploy.

Through proven experience, IAM and API expertise, Curity builds
innovative solutions that provide secure authentication across mul-
tiple digital services. Curity is trusted by large organizations in
many highly regulated industries, including financial services, health-
care, telecom, retail, gaming, energy, and government services
across many countries.

Check out Curity’s library of learning resources on a variety of
topics, like API Security, OAuth, and Financial-grade APIs.

Follow us on Twitter and LinkedIn, and find out more on curity.io.

https://curity.io/?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity
https://curity.io/resources/api-security/?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity
https://curity.io/resources/oauth?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity
https://curity.io/resources/financial-grade?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity
https://twitter.com/curityio
https://www.linkedin.com/company/25049399/admin/
https://curity.io/?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity

Preface
From Hello World to Hello Developers

In the widening API sphere, marketing an API business involves
knowing your community intimately, and fine-tuning your devel-
oper support channels to help users excel. With APIs continuing
to surge in importance across all industries, spreading API knowl-
edge becomes increasingly important. More APIs equals more
competition, meaning that API evangelism, the job of promoting
a developer-centric program, now needs its own strategy.

This eBook is the first of it’s kind. A compilation of advice and
research geared specifically to DIY marketing for a public web
Application Programming Interface or similar developer-oriented
program. These aren’t tips for amassing hundreds of developer
emails - no. This is about creating a usable frontend for your
API platform that employs healthy developer outreach to naturally
increase the prestige of your Software-as-a-Service.

API Marketing is one of the Nordic APIs 6 Insights to API Practice;
a core facet of providing an API. Thus, we’ve collated our best
advice within this book to explore the Marketing Insight from four
important angles:

• Part 1 - Planning: Tips on starting your program, understand-
ing your target consumer segmentation, market research, and
more using the API canvas model to position an agile API
business.

• Part 2 - Developer Relations: Discussions on onboarding
and quality developer experience when it comes to overall
API design as well as documentation and developer portal
resources.

Preface iii

• Part 3 - Promotion: Outlines emerging API discovery tech-
niques, API directories, and relevant press resources that
will help spread awareness of your product, as well as ideas
for creating informative content that informs and engages
potential API users.

• Part 4 - Advocacy: Lastly, we define community building
best practices, the roles of program advocates, tips on holding
your own developer conferences, API demoing, as well as
case studies into developer relations failures and successes
that companies have had in their public API programs in
recent years.

As you can see, we’ve taken a holistic approach to marketing in
this volume. The end goal is help readers extend reach and onboard
more developers to their API. So please enjoy How to Successfully
Market an API, and let us know how we can improve. Be sure to
join the Nordic APIs Digest for biweekly blog updates, and follow
us for news on upcoming events.

Thank you for reading!

– Bill Doerrfeld, Editor in Chief, Nordic APIs

http://nordicapis.com/newsletter/
http://nordicapis.com/event-calendar/

Preface iv

Connect with Nordic APIs:

Facebook | Twitter | Linkedin | Google+ | YouTube

Blog | Home | Newsletter | Contact

http://facebook.com/nordicapis
http://twitter.com/nordicapis
https://www.linkedin.com/company/nordic-apis
https://plus.google.com/u/0/+Nordicapis/posts
https://www.youtube.com/user/nordicapis
http://nordicapis.com/blog/
http://nordicapis.com/
http://nordicapis.com/newsletter/
mailto:info@nordicapis.com

Part One: Planning

Prepping an API for consumption

Strategically marketing an API platform relies on understanding
the core business model and API product lifecycle. Thus, this
section on planning covers our tips for building from the ground
up, finding your target developer for market segmentation, and
transforming your business and platform design into one that
embraces developer experience as a top priority.

Building from the Ground
Up: Tips for Starting Your

API Program

New public APIs hit the market all the time and behind these
APIs sit a myriad of different companies and organizations; indi-
vidual developers, startups and established businesses who have
concluded they need a public API program in order to better serve
their audience. Doubtless these new API providers will all have
different ideas on starting a public API program, the implications
for their business, and what their future plans for expanding or
enhancing their API entail. In this chapter we’ve drawn together 5
tips for starting a public API program, with some advice on what
to consider when you go from zero to a production API deployment.

Starting a public API program is a massive topic. For the sake of

Building from the Ground Up: Tips for Starting Your API Program 3

brevity we’re only scratching the surface in this chapter, hitting
the main points as relevant to API Marketing. For more on
Platformitization, Development, and Design see our other eBooks.

Clarify Your Needs

First and foremost, before doing a scrap
of work your first task is to clarify that
your organization actually needs a public
API program. This is hugely subjective given the spectrum of
organizations interested in APIs, from one-man-bands to huge
multinational corporations, and is compounded by the varying mo-
tivations behind constructing an API. As soon as your API program
is considered necessary stop and ask yourself these questions:

• Would my product/platform benefit from having an API?:
There are many compelling reasons to start an API pro-
gram: enabling choice for customers in how they consume
your products, extending the reach of your product to your
customer’s customers, and enabling new business channels
with partners, to name but a few. Regardless of the hype
surrounding APIs, if you can objectively say yes to any of
these reasons then starting an API program is worthy of
investigation;

• Are my customers asking me to deliver my product/plat-
form to them differently (especially via an API)?: Much
of the clamour for delivering an API will come from the
userbase. Again there will be a huge amount of subjectivity
and self-interest in their reasons for asking for one: Some will
ask purely because they’ve heard the term and noted that
some of your competitors offer them; while others will have
a genuine need, such as the desire to integrate your product

http://nordicapis.com/ebooks/
http://nordicapis.com/business-benefits-of-private-apis/
http://nordicapis.com/business-benefits-of-private-apis/

Building from the Ground Up: Tips for Starting Your API Program 4

with other applications they use. Integrating your product
stack into their workflows is disconnected and manually
intensive, so integrating via an API is hugely advantageous.
Both of these are compelling reasons to act: If you don’t have
an API but your competitors do, what’s to stop your customer
from doing business with them?

• Do I understand the effect that introducing an API will
have onmy business (both good and bad)?: It’s possible that
your organization could be profoundly affected by introduc-
ing an API. For example, an API may change the operating
model of your business from daytime hours only to a 24x7
operation, or may be so transformative as to turn your busi-
ness into an ‘Infrastructure-as-a-Service’ model. One needs
only to look at Amazon to see how disruptive the effect of
creating a public API program could be on your business.

If you can answer these three questions positively then starting
an API program is definitely in the interests of your organization.
Your task now is to get wholesale buy in from stakeholders in the
business.

Get Buy In (From Everyone)

As we started to discuss in tip #1, you
should be clear that unless your API is the
main channel for selling the product you
are building, starting an API program could fundamentally change
the way your business operates. For example:

• Your API could disintermediate parts of your own business
(for example, if you rely heavily on direct sales). Is the
leadership team ready for the implications this could have
on the workforce?

http://nordicapis.com/living-in-the-cloud-stack-understanding-saas-paas-and-iaas-apis/
http://nordicapis.com/how-apis-are-disrupting-the-way-we-think/

Building from the Ground Up: Tips for Starting Your API Program 5

• If providing an API drives volume, can your business cope
with that extra volume without change?

• Do you have the team and resources to build adaptive code
and scale your developer relations so that the API is treated
as a full-scale product?

• Do your backend systems that will be exposed by the API
have the means to support an abstracted security model or
identity provider, and are you aware of what doing so will
mean for the threat of cyber attacks and risk management?

In order to be successful in starting your API program you need
every member of the team to understand that you are effectively
extending your internal systems outwards. The impact will
have both a technical and business focus, so it’s important to
communicate in a way each stakeholder understands. Fostering a
culture of security, and adopting an API mindset throughout an
entire organization is vital for success.

Aim for a Public MVP

With the need established and the team on board, you should have
a clear picture of why you are building a public API and who needs
to be involved. You can now create a vision of what your API will
deliver in the form of a minimum viable product (MVP), delivered
to the market as an alpha or beta. This MVP will allow you to get
your API in front of potential API consumers as quickly as possible
and allow you to start collecting feedback. The MVP are steps 1 and
2 of a 3-step process:

1. Initial build out of the MVP with internal private testing only;
2. Offering the MVP to a select audience of existing customers

or partners who have the potential to become consumers of
your API;

http://nordicapis.com/how-to-control-user-identity-within-microservices/
http://nordicapis.com/world-war-api-cyberattacks-on-the-international-scale/
http://nordicapis.com/fostering-an-internal-culture-of-security/
http://nordicapis.com/api-ebooks/developing-the-api-mindset/

Building from the Ground Up: Tips for Starting Your API Program 6

3. Migrating the MVP to a production-ready version of the API,
ready for general availability.

In order to get the most value in your goal of offering a public API
the MVP should be comprised of a number of things:

• A publicly available endpoint or simple sandbox that can be
used by potential API consumers to trial your products, with
enrollment either by invitation or with a set of test credentials
known only to your target audience;

• An API description in a specification format of your choice
(OpenAPI, API Blueprint, RAML, etc.);

• Documentation, possibly in the form of a cookbook that
describes how to implement an application that consumes
your API;

• A well-formed security model so that potential API con-
sumers will understand the implications of integrating with
your API;

• Establish a means to support API consumers who are trialing
the API through a medium of your choice: Twitter, Slack,
email or whatever makes the most sense for your organiza-
tion;

• Analyze how those trialling your API use it in an effort to
understand if there are any potential design flaws;

• A high-level terms of use so API consumers are aware of
the expectations surrounding the usage of your API: If there
are stipulations that may discourage certain consumers it’s
probably better that they aren’t part of your audience when
you introduce the MVP.

With the MVP available to potential API consumers you are at
liberty to take advantage of the next tip: Acting on the feedback.

http://nordicapis.com/a-humans-guide-to-drafting-api-platform-policy/

Building from the Ground Up: Tips for Starting Your API Program 7

Act on Feedback

With the MVP in the market and channels
of communication back to the API team
in place, you have a unique opportunity
to elicit and act on feedback before a public release. Your API will
of course continue to evolve but with this early feedback you are
at liberty to perform elements of wholesale reengineering. Such
actions might include one or more of the following:

• Revisit the design of the API and ensure it’s updated to reflect
any feedback on usability;

• Ensure you listen to reasonable customer demands for dif-
ferent encoding types: The majority of new APIs use JSON
as their encoding of choice, but if it makes sense to provide
the data as XML because the majority of your potential
API consumers prefer XML for legacy reasons you should
consider it;

• Ensure the rate limits and throttling you introduced with
your MVP can realistically be sustained when higher usage
is applied;

• Tweak your conditions of use to ensure you address your
target audience correctly, giving your API consumers terms
they are happy to commit to, but also allowing business to
sustain as your API grows.

By taking these actions you will be in a much better place to release
version 1.0 of your API. However, you’ve got version 1.1, 1.2 or
even version 2.0 to think of; another point in our arsenal of tips for
building a public API program is to future proof your organization
by building an API practice that can support future releases.

http://nordicapis.com/accumulating-feedback-4-questions-api-providers-need-to-ask-their-users/
http://nordicapis.com/common-cases-when-using-soap-makes-sense/
http://nordicapis.com/stemming-the-flood-how-to-rate-limit-an-api/

Building from the Ground Up: Tips for Starting Your API Program 8

Build your Practice

Building an API practice is similar to cre-
ating a center of excellence or community
of practice as in any other technological
or architectural discipline. However, the API practice should be
geared towards a method for developing APIs that ensures you can
go from zero to production with a known series of standards and
methodologies and the minimum amount of fuss. Some tenets of
this practice are:

• Expressing a clear vision of the API and the roadmap of fea-
tures, releases and enhancements that will help your business
meet that vision;

• Create an architecture and development framework that sup-
port productivity and will allow you to iterate rapidly on the
items in your roadmap: Using practices like API-first design
with a API description format that best suits your needs and
possibly a tool like Stoplight to help model your APIs will give
you a better chance of delivering new APIs and API versions
with the greatest efficiency;

• Create an internal style guide for your API developers that
can support your productivity efforts by making API designs
consistent;

• Make the most of your infrastructure and DevOps tools: The
options for choosing an approach to API development are
vast and include different models; SaaS-based API lifecycle
management tools, web application frameworks and PaaS,
containers, and so on. However, whichever option is right for
your organization will ensure that you leverage the value of
continuous integration and continuous delivery to really help
accelerate delivery;

• Keep your internal stakeholders informed and involved: There
may be aspects of your roadmap that draw new areas of the

http://nordicapis.com/introducing-api-insights/
http://stoplight.io/

Building from the Ground Up: Tips for Starting Your API Program 9

business under the API banner and therefore affect different
operational or support teams. Having clear lines of commu-
nication and engagement with these teams is vital for the
continued success of your API;

• Communicate externally: Your MVP has been a success and
you’ve started to engage with your target audience, but
there’s a momentum that needs to maintained. Ensure you are
communicating your goals with this audience in a way that
that casts the net wider; publish articles and blogs extolling
the value of your API in the context of the industry you
operate in and ensure you address discoverability techniques
like Search Engine Optimization and directory bookmarking
for your documentation pages so that potential customers can
easily find your API.

Final Thoughts

The tips we’ve drawn together in this chapter should help shape
your thinking if you are considering starting a public API program.
However, every business or organization’s circumstances and mo-
tivations are unique, so most importantly trust your gut instincts.
APIs are a great method for taking products to market, so trust your
own judgement and use what advice you can from this post to help
make your public API program a reality.

http://nordicapis.com/tips-to-improve-the-discoverability-of-your-api/

Define Your Target
Developer Audience

Throughout webby plains of interconnectivity, over fifteen thou-
sand APIs now expose data and systems — adding awesome func-
tionalities to mobile apps, and allowing entirely new data-driven
businesses and new user experiences to blossom. Within any econ-
omy showing such exponential growth, the diversity of its players
will naturally increase as the market evolves. It’s a fact that the API
space is becoming increasingly diverse — it’s not the old days where
a few independent developers created mashups for fun. APIs have
entered large business dealings, gained the attention of enterprise-
level product designers, led to the creation of multi-billion dollar
startups, influenced creative marketing campaigns, and more.

So, with all this new interest from varying audiences, API providers
may be asking: who are we selling to? With more and more
consumers entering the API space, it’s now more important than
ever to consider the large breadth of specializations amongst third
party developers. These factors take the form of:

• varying technical understanding
• different industry backgrounds
• geographical location
• online activity
• API use cases
• protocol preferences
• programming language preferences

http://nordicapis.com/apis-are-evolving-the-b2b-landscape-2/
http://blog.apiary.io/2015/05/03/The-Role-of-the-API-Designer/
http://blog.apiary.io/2015/05/03/The-Role-of-the-API-Designer/
http://www.betaboston.com/news/2014/07/03/uber-mobile-app-cloud-service-api/
http://www.betaboston.com/news/2014/07/03/uber-mobile-app-cloud-service-api/
http://nordicapis.com/apis-part-of-the-creative-palette/

Define Your Target Developer Audience 11

• …and more.

In order to segment marketing correctly, and to do so in a way that
is appealing and in good taste, it comes down to intimately knowing
the needs of your audience. In this chapter we interview developer
program strategists from Catchy, Dopter, and Stateless to explore
why knowing your target API consumer is now more important
than ever.

Why Create a Developer “Persona”?

Mike Kelly runs Stateless.co, an API strategy consulting firm based
in London. He describes the wide breadth of developers currently
in the space:

“There are of course broad categories such as system
integrators, mobile, web, embedded systems. In reality
there are innumerable forms of developers each with
their own set of constraints and requirements, which is
why developing a set of realistic developer personas is
important.”

Traditional business models necessitate a process of consumer
profiling. The same can be done in a way that makes sense for this
niche API sector. Intimately understanding your target consumer
is crucial as it will influence the following:

• Market Fit: Knowing your consumer can help you discover
unmet needs in the market your API could potentially satisfy.

• Functionality: Understanding use cases can help design API
functions around that need.

• Segmentation: Knowing your user can help segment market-
ing efforts and decrease customer acquisition cost.

http://catchyagency.com/
http://dopter.se/
http://stateless.co/
https://twitter.com/mikekelly85
http://stateless.co/

Define Your Target Developer Audience 12

• Creative Marketing: Knowing what your audience is inter-
ested in will help tailor your marketing to this audience,
influencing your message, tone, appearance, design, style,
and more to attract your target audience.

Kelly goes on to mention the importance of establishing developer
personas is that they establish an important frame of reference:

“If you’re unable to clearly describe your target cus-
tomers and their use cases for your API, that usually
indicates that the underlying proposition is not focused
enough. Likewise, if you’re unable to clearly determine
how a proposed feature provides immediate value to
one of your personas, that is a strong indicator that
it doesn’t belong on the roadmap yet…I’m a huge fan
of any methodology that encourages approaching the
strategy and design of an API by focusing on the client
side, rather than the server side.”

The Developer Brain

‘Know your demographic.’ ‘Understand
the psychology of your consumer.’ We
hear phrases like this frequently in general
business discussion. Is it possible to apply
the same philosophy to marketing APIs?

Developers are not your average con-
sumer. In a conversation with Nordic APIs,
General Manager Jason Hilton of Catcy Agency, an international
developer program management outfit, pinpointed the following
attributes. Developers are analytical. They appreciate authentic-
ity. And in a sea of competing tools with rampant overzealous

https://twitter.com/catchyjason
http://catchyagency.com/

Define Your Target Developer Audience 13

marketing, they have the right to be skeptical. A web developer
especially wants to pick up and play with a product, expecting an
instant proof that it behaves as advertised.

Take these generalizations as you will, but they’re worth to consider
when developing a marketing message and story applicable to this
certain audience. Both content and aesthetics can either incorporate
or alienate depending on their execution. Creating a developer
portal, for example, should, in response to our brief psychological
examination, be intuitively designed, with transparent informa-
tion, an attractive layout, and interactive modules that allow one
to test API calls.

But Plenty of Other People Are
Interested in APIs, Too!

Andreas Krohn of Dopter urges us to consider a wider scope
with API marketing. In his talk at the APIStrat conference, Krohn
encourages us to rethink developer evangelism. Instead of focusing
so heavily on developers, API providers should create more inclu-
sionary customer personas.

“I strongly dislike how developers are worshipped in
marketing”

In his work at Dopter, an API strategy and consulting firm, Krohn
routinely encounters providers that want to create hackathons to
reach out to developers to promote their APIs. Though that can
be an effective strategy, are developers really the sole audience
that may be interested in APIs? The truth is that designers, en-
trepreneurs, marketers, and other business leads are just as impor-
tant constituents.

Krohn believes we naturally target developers for the following
reasons:

http://andreaskrohn.se/
https://www.youtube.com/watch?v=C6QqEo3DUEo
https://twitter.com/dopterse

Define Your Target Developer Audience 14

1. APIs are technical.
2. Developers relate to other developers.
3. Silicon valley influence.
4. Myth of the single developer.

Though many people aware of APIs are developers, not everyone
is a developer. We must remember that the world is bigger than
the Silicon Valley. Just as the laymen smartphone consumer can
brainstorm innovative app ideas without needing to know how to
code, there is a similar low bar that allows anyone to understand
the possibilities APIs offer to then envision creative applications. In
a company, products are developed by large teams — entrepreneurs,
project managers, designers, etc. Developers are crucial to any
software process, but in reality, a diverse array of experiences
contribute to innovation in the space.

Expanding our Portal: Developer End
User Evangelism

If we incorporate a wider audience into our understanding of their
target API consumer, how does that change the way an API is
marketed?

Krohn encourages us to remember that real value is only created
when an end user uses the app that’s created with the API. And
who creates that experience? Entrepreneurs may create the product,
managers oversee production, designers envision the user experi-
ence, developers connect the backend, and other domain experts
may contribute. All these stakeholders intimately understand the
value of API integrations, and thus all their perspectives and needs
should be considered.

Think of standard web API portals as they are now. Can en-
trepreneurs immediately discern the end user value when they

Define Your Target Developer Audience 15

view API documentation? More often than not, their needs are
excluded. There is a lack of high-level summary and sample use
cases to inspire non-technical minds — this experience is often non-
existent.

Krohn believes that Developer evangelism should rather be End
User Evangelism. As Krohn says, “be aware of who you are includ-
ing or excluding, and make it a conscious decision.” Think you know
your target audience? that may soon change.

Varying Industry Backgrounds

With the recent rise of B2B and enterprise interest, should API
providers be selling to individual developers? Or is it a better idea to
seek out business partnerships directly? The way APIs are marketed
and consumed varies tremendously on the industry. API providers
may range from a two person startup to an enterprise development
team spanning hundreds of employees. The same diversity is
present on the consumer end, affecting the way APIs are acquired.
The core value message also changes based on whether the API
is directed toward startups, engineers in a large organization, or
toward convincing upper leadership.

Jason Hilton of Catcy says we can begin by separating the consumer
side of the API space into two distinct groups:

• Enterprise Developers: Developers working within a large
organization. The challenge faced here is that they may not
be the decision maker. Working on the inside, means they
must make the case upwards, involving multiple parties and
potentially creating a longer decision making process.

• Freelance Dev Shop: These are small startup teams looking
for helpful API integrations to accel their product.

https://twitter.com/catchyjason
https://twitter.com/catchyagency

Define Your Target Developer Audience 16

According to Hilton, industry variance mean it’s “It’s worth ap-
plying specific techniques and strategies. Just as much energy and
consideration needs to be put into marketing a developer program
as with any other product.”

Mike Kelly shares a similar experience, encountering differences in
user acquisition based on who’s consuming:

“It varies a lot between different businesses and markets.
If a relatively lightweight, phased on-boarding process
for partners and clients is realistic and commercially
viable; then absolutely APIs can, and should, be used
to generate leads from developers. We refer to this as
bottom-up user acquisition … If the business is tied
to a traditional top-down user acquisition process,
with procurement decisions happening in upper man-
agement, then developers and the API will play much
less of a role in sales. Having said that, if deep technical
evaluation and due diligence is a key component of their
decision making process, then the API will still play a
key role.”

Location & Demographics

With so much personal data online — GPS, demographics, bio,
history, taste, “likes”— the amount of data opens up a pandora’s
box for hypertargeting. However, simple geographical location
is still considered vital when creating a profile of you target API
developer:

According to Catchy, “location is a crucial factor. AT&T,
for example, has APIs that are useful to developers who
are producing apps for the US market. Indeed, many
of their APIs are only available to developers with a

http://www.signetinteractive.com/blog/2014/07/21/hyper-targeting-your-audience-with-online-advertising/
http://www.signetinteractive.com/blog/2014/07/21/hyper-targeting-your-audience-with-online-advertising/
http://developer.att.com/apis/speech/docs
http://developer.att.com/apis/speech/docs

Define Your Target Developer Audience 17

US billing address because of the monetization aspects.
Trying to attract non-US based developers to adopt
these APIs is completely pointless.”

Other than geographical pinpointing, additional physical locations
like developer centric programs such as hackathons, meetups, and
conferences can be used to discover your consumer. If we consider
online activity, our target developer location varies depending
on their needs. Gauge how active your target consumer is on
Stackoverflow, Github, Twitter, Reddit, among other communities.

API Use Cases

Next, API providers must imagine the API’s use case in the wild.
Why would someone want to use your API? Providers should con-
sider the possibilities the data offers and brainstorm applications
that could be created using the API. Kelly believes this process will
help identify consumer needs:

“The key to a good persona is in establishing concrete
user scenarios and stories…You need to understand the
needs of your customer before deciding what to offer
them.”

This process also involves considering the business model of the
product that will be created using the API. Hilton notes that “the
business model of the API is important — we know that serious
developers will monetize either through paid apps, or carrying ads.
Trying to get the developer of a paid app to implement an ad API
is pointless.”

Define Your Target Developer Audience 18

Technology Preferences

Developers have varying technological specializations, focusing in
different programming languages, attracted to certain protocols
over others, and coming with a unique history using specific tools.
So, how critical is it to consider these concerns when marketing an
API?

Hilton: “As well as understanding why someone would
want to use your API, it is vital to having an under-
standing of who could do so. Likely there will likely
be some criteria that would directly influence the sorts
of developers who could become potential users of the
API. Such criteria might include prerequisite technical
knowledge, such as coding languages, platforms, or
protocols, or else might entail non-technical factors
such as location. If an API marketing campaign is to be
successful, it should target all and only those developers
for whom the message is relevant. Understanding your
API’s technical requirements and restrictions, and then
being able to identify and reach relevant developers, is
a key facet of API marketing success.”

Kelly: “JSON over HTTP seems to be the standard pref-
erence these days; likely because they are both simple
and ubiquitous with strong tooling on the vast majority
of development stacks.”

Lessen The Corporate Branding

Marketing, relations, outreach — typical B2B sales motives, labels,
and tactics may conjure up negative connotations. Hilton acknowl-
edges a common pain point among working with enterprise clien-

Define Your Target Developer Audience 19

tele is knowing when to lessen the corporate branding to appeal to
the tech community.

Mike Boich of Apple was arguably the first self-proclaimed soft-
ware evangelist — now throughout the tech community, the title
is more commonplace than ever. It’s no wonder why the tech
community has embraced alternative roles like “evangelist” or
“developer advocate.” It helps communicate a true passion, and
having a passion, and a true conviction for what you are promoting
will win the day. The lesson of 2015, according to the Catchy team,
is that “If you have a developer evangelist, you have a dev program.”

Successful copy can’t be homogenous. It must be direct, imbued
with enough transparent technical knowledge to communicate
value. This becomes a concern for larger clients that are not
accustomed to exposing their documentation. When asked his
opinion about the pros and cons of opening up an API to the public
— weighing the loss of security and authority over proprietary
knowledge — Hilton advises as follows:

“It depends on the goal of the API owner. If volume is
critical, then opening up the API is a crucial first step. If,
however, it’s niche and / or dependent on the quality of
products produced using the API, then keeping it closed
is the more sensible route.

As a general rule, if the API is for enterprise then
being ‘closed’ can work. An example here would be
SAP. Being closed allows the API owners to retain
strict control of the ecosystem, ensuring all apps retain
business look-and-feel, and also quality measures. But
 closed APIs, entailing log-in to a proprietary ecosystem,
will always be a barrier to entry for the majority of
developers.

If the end product is commercial (i.e. apps in the Play
store) then open APIs have significant advantages. For

http://en.wikipedia.org/wiki/Mike_Boich
http://timoelliott.com/blog/2013/07/how-to-become-a-technology-evangelist.html

Define Your Target Developer Audience 20

one, they are more popular with developers, who can
fork the source code to invent completely new products.
This allows developers to innovate, creating products
that the original stakeholders would not otherwise have
thought of. Open drives innovation, and keeps barriers
low. Android apps being the paradigm example.”

Developer Experience

The presentation of developer facing material is paramount to suc-
cess in the space. According to Mike Kelly, “providers may see the
best growth opportunities in customer acquisition and activation by
developing tutorials, improving documentation, exposing sandbox
environments, tailoring the API design to specific use cases.”

API providers can use tactics to help acquire developers, increase
onboarding efficiency, and maintain user retention by appealing to
the tastes and needs of the audience. Stellar reasoning behind creat-
ing quality developer experience can be found in John Musser’s “10
Reasons Why Developers Hate Your API.” Harking back to Andreas
Krohn’s stance on the need for increased inclusion, API experience
should also consider the entrepreneur experience, the manager
experience, and the designer experience. In that spirit, embrace
developer language, but also cater content, appearance, UI, and
UX to your audience. According to Kelly, “developer experience is
the most important metric of quality for an API. It’s vital.”

Build it And They Will _____

Simply opening a platform up without the right forethought, plan-
ning, and intimate knowledge of your consumer will not work
in this sector. Product teams within technology companies often

http://www.slideshare.net/jmusser/ten-reasons-developershateyourapi
http://www.slideshare.net/jmusser/ten-reasons-developershateyourapi
http://www.programmableweb.com/news/why-not-to-overlook-api-planning-and-what-to-do-about-it/analysis/2015/06/04?page=2&utm_content=buffer49de2&utm_medium=social&utm_source=linkedin.com&utm_campaign=buffer
http://www.programmableweb.com/news/why-not-to-overlook-api-planning-and-what-to-do-about-it/analysis/2015/06/04?page=2&utm_content=buffer49de2&utm_medium=social&utm_source=linkedin.com&utm_campaign=buffer

Define Your Target Developer Audience 21

assume the product will be used, but too often, marketing is either
too slim or inefficient, leading to a low adoption.

Understand Your Audience

Think you know your target audience? that may soon change. As
diversity increases in the API economy, we reconsider API user
segmentation, defining specific traits that make up today’s unique
API consumer. Perform the necessary research to find who your
consumer really is. Who is the key influencer that can communicate
the value of your API? It comes down to knowing the needs of
this audience, and this requires thorough analysis. Wielding this
knowledge, you should have helpful answers to the following:

• Technical Perspective: Understand what type of person will
be interested in your API, and make sure your marketing and
API portal does not exclude interested parties.

• Industry Background: Consider who will be attracted to
your API: is your API a public offering encouraging startup
developers to check it out, or is it a partner integration used
by enterprise teams?

• Needs: Understand the needs of your audience first, then
tailor functionality and experience to address those concerns.

• Architecture: Build in relevant modes that your target audi-
ence find useful.

http://nordicapis.com/api-lifecycle-analysis-stage-preparing-your-api-strategy-pre-launch/

Developer Experience is
a Key Ingredient of

Quality APIs

According to The State of API Survey Report 2016 by Smartbear,
nearly 85% of the respondents agree that API quality is crucial to
their organization. The same survey identifies the top three reasons
keeping organizations from delivering quality APIs are:

1) Increased demands for speed 2) Lack of integration between tools
and systems 3) Managing expectations of different stakeholders

A remedy for the first reason can be found by fine-tuning archi-
tecture and optimizing code. The second reason requires a DevOps

http://nordicapis.com/defining-the-emerging-role-of-devops/

Developer Experience is a Key Ingredient of Quality APIs 23

approach to operations and automated solutions, which in an API-
centric point of view can be labeled as APIOps. The third reason is
a bit more tricky and is discussed in this chapter. Part of the solution
is to utilize the still rather fresh idea of the API Model Canvas.

API Model Canvas – offspring of Lean
Canvas

The API Model Canvas should be familiar to startup people since
it resembles Lean Canvas. The Lean Canvas proposed by Ash
Maurya is an approach for entrepreneurs and startup businesses
that is more problem-focused than its ancestor Business Model
Canvas. Canvas models take customer needs into consideration,
force business design to be iterative, and unlock fast, adaptive
building methods.

At first sight these methodologies might look pretty similar. API
Model Canvas is, as name suggests, more focused on the API
Economy and for situations where the API is a product. What
differentiates API Model Canvas from its ancestors is the focus on
developers, the rockstars of the API Economy.

https://leanstack.com/about/
https://leanstack.com/about/
http://nordicapis.com/what-makes-an-agile-api/
http://nordicapis.com/api-ebooks/the-api-economy/
http://nordicapis.com/api-ebooks/the-api-economy/

Developer Experience is a Key Ingredient of Quality APIs 24

Developers are the Rockstars of the
API Economy

Developer eXperience is a concept referenced in the API world
very often, and for a good reason. Developer consumers are the
lifeblood of the API based economy. The API Model Canvas reflects
this importance with three sections dedicated toward keeping them
in the spotlight: Developer Relations, Developer Program, and
Developer Segmentation.

Developer Relations

As Phillipp Schöne of Axway sees it, API providers must go beyond
great API design and documentation, and work toward creating
superior end-to-end experiences:

http://nordicapis.com/why-api-developer-experience-matters-more-than-ever/
http://nordicapis.com/using-templates-for-documentation-driven-api-design/
http://nordicapis.com/top-specification-formats-for-rest-apis/

Developer Experience is a Key Ingredient of Quality APIs 25

“If you are in a competitive situation it can become
a differentiator to have a good and well thought out
experience, even if the price is a little bit higher. Often
when API providers consider Developer Experience,
API Design is usually only taken into account, which
is wrong.”

Running an API with quality developer relations means intimately
knowing your consumer, their needs, and advocating on their be-
half. For active community participation, Phillipp sees hackathons
as a “great way to learn what external people think about your
offering… start with smaller groups and go bigger if you get more
confident with your offering.”

Developer Program

Maintaining DX means having a holistic product approach to
APIs; part of this means forming an internal product team, with
the responsibility of API program upkeep and marketing. Tuning
into consumer feedback is important, but Phillipp also believes
that “if providers ‘eat their own dogfood’ they usually experience
the caveats and hurdles of their offering quite fast.” ### Devel-
oper Segmentation, Targeting and Positioning We’ve seen how
the developer consumer market has diversified in recent years. As
with any product, the right segmentation needs to be considered.
This involves an intimate understanding of your consumer and
where they fit within the API economy. How you target specific
developers depends on the market and audience:

“For example, if you try to create something specific
for a vertical or niche try to leverage industry specific
forums, websites, and events to promote the idea. If you
target a broader audience it’s more complicated and you
have to search for developers who feel the most pain
and gain and would benefit the most from your service.”

http://nordicapis.com/day-in-the-life-of-an-api-developer-evangelist/
http://nordicapis.com/how-to-understand-your-target-api-consumer/
http://nordicapis.com/new-breeds-of-businesses-that-have-emerged-out-of-the-api-economy/

Developer Experience is a Key Ingredient of Quality APIs 26

Schöne adds that quickly compiling customer references and testi-
monials is paramount for establishing a reputable image.

Addressing the Entire API Model
Canvas

The API Model Canvas is easy to follow and fill in. Having succinct
answers for each section can help you nail down your value
propositions and specific strategies. You should not do it alone or
fill everything in like writing an essay, rather, it should be designed
as a team. More importantly — do not design an API business model
alone in the office cubicle. You should involve IT people, business
strategy people, and a few developers from candidate customers.
Because your API is expected to bring value to these customers, the
foremost aim should be to solve their problem and solve it well.

Case Study: National Library of
Finland

Use of the API Model Canvas has been a proven asset across several
teams. One of the latest teams to use it was the The National
Library of Finland. They have millions of data objects about Finnish
journals and newspapers dating back to the 17th century. All this
information needed to be made accessible in a way that current
newspaper publishers, researchers, and citizens could efficiently
consume. In brief, they needed a quality API.

The project was a three step process, with the API Model Canvas
used in the second phase:

• Define an API strategy. Obviously strategy emerges from
the organization, which in this case was National Library of

http://nordicapis.com/api-insights/business-models/

Developer Experience is a Key Ingredient of Quality APIs 27

Finland.
• Utilize API Model Canvas to craft a business model for APIs

needed.
• Describe API with design driven language such as RAML or

Swagger.

Of course after design is finished and tested with a mockup server,
the API must also be implemented. For this project, we decided
that we would leave implementation out at this stage and focus on
business model and API design.

MVP for next step

During the first APIOps camp, we did not go through all boxes in
the API Model Canvas. Instead we took a lean startup approach and
started from the middle at “Strategy for the API and Objectives”.
After that we jumped around the boxes to gather a Minimum
Viable Product (MVP) for the next step. This was possible since
we had experience in Lean Startup style development and canvas
models. For example, we did not touch “Cost Structure”, “Developer
Program”, or “Developer Relations” at this point.

The idea was to collect just enough information for the next
iteration of the API’s Swagger description and not to plan anything
unnecessary. In the process, two collections were identified from
data and feedback gathered from data consumers: newspapers and
journals. Based on that we decided to define read interfaces for both
with similar structure. In practice we defined newspaper endpoints
first and then cloned the structure in Swagger design. We did not
touch write interfaces at all, since we narrowed down the scope to
just API consumers and excluded data administrators.

After adding some basic endpoints to the API, we collected feed-
back from developers who we had engaged with earlier. Including
API consumers in the API design phase gave us insights on what

http://nordicapis.com/open-api-initiative-means-api-space/

Developer Experience is a Key Ingredient of Quality APIs 28

developers were looking for in the documentation, and shed insight
on what keywords and writing style grabbed their attention. It
also convinced The Library of Finland to dig deeper into DX than
just providing nice documentation: code examples for utilizing API,
case descriptions, and providing customer support. In other words,
the client understood the need and value of a proper developer
portal.

This cycle goes back and forth: filling in and altering the API
Model Canvas, returning to Swagger design and developer testing.
After some rounds, you’ll have a solid business plan, and golden
API Design loved by developers. At that point you are ready to
implement it.

Gain speed and make it fun

API Model Canvas is an important tool and in this particular case
worked very well. For a team with a startup mindset and familiarity
with Lean Canvas, getting started is easy going. At the end of the
day, API Model canvas can make business model design fun — even
people participating in this type of process for the first time will see
API Model Canvas as a solid tool for API centric business design.

Incorporating third party developers into the modeling process
right from the start eliminates the risk of losing your Developer Ex-
perience focus. Keep in mind that developers are the people through
which you’ll reach business agreements and convince upper tier
managers. If developers hate your API, you’ll lose revenue— every
developer lost is revenue lost.

Final Thoughts

There are many theories on API business modeling; the Nordic
APIs philosophy of API practice involves 6 core tenets, for exam-

http://nordicapis.com/beautiful-ui-design-for-api-developer-portals/
http://nordicapis.com/beautiful-ui-design-for-api-developer-portals/
http://nordicapis.com/8-keys-to-creating-a-truly-usable-api/
http://nordicapis.com/api-strategy-must-balance-developer-user-experience/
http://nordicapis.com/api-strategy-must-balance-developer-user-experience/
http://nordicapis.com/introducing-api-insights/

Developer Experience is a Key Ingredient of Quality APIs 29

ple. Whether following these insights, the API Model Canvas, or
other toolkits, Phillipp notes that the “true importance is that the
API Provider starts thinking about the different dimensions and
implications of their API.” For him, the main traits a lean API MVP
design must consider are:

• Product ideation and preparation
• Monetization and growth projections
• Legal aspects: are there any legal obligations or regulatory

mandates we need to worry about?
• Infrastructure Questions: how to connect to existing Data

sources, how do we manage API consumers, how do we want
to scale, how to we monitor our SLA and service quality?

• Security Questions: do we need security measures like rate
limiting and other protection mechanisms and how do we
enforce them?

• Backoffice Questions: how do we bill our consumers?
• Marketing Questions: how do we promote our product and

how can we drive adoption?

Lists like these go on and can easily be extended. It may seem
daunting, but the modeling phase is really similar to building out
any software or other product. Many areas require continuous
improvement, which is why the APIOps strategy is so helpful, as
development and running services is based on or automated with
APIs entirely.

http://nordicapis.com/introducing-api-insights/
http://nordicapis.com/introducing-api-insights/

Part Two: Developer
Relations

Creating a helpful forward facing presence

As your developer portal is the center for API documentation,
support, and extra developer resources, it really acts as it’s own
product. Since this online presence is a main bridge to developer
users, this section on developer relations covers best practices for

31

developer center design, developer resource support, code tutorials
that instruct API usage, and how to protect your brand identity
with platform policy guidelines.

Ingredients That Make
Up a Superb Developer

Center

What is a consistent attribute across successful API programs? They
all have awesome developer portals. Good API documentation is
easy to navigate and understand, but the best, shining developer
center pushes onboarding and actual implementation to new levels
of usability, to the point where integrating the API becomes simple
as cake — well, at least as simple as technically possible.

In the past we’ve described what good UI design for a developer
center looks like, but what information and guides should you pri-
oritize for your developers? It varies from API to API as functional
requirements differ, but some tenants hold true across the industry.

Good developer centers allow one to check documentation, get API
keys, view sample apps, check uptime, toy around with sample

http://nordicapis.com/beautiful-ui-design-for-api-developer-portals/
http://nordicapis.com/beautiful-ui-design-for-api-developer-portals/

Ingredients That Make Up a Superb Developer Center 33

calls, and manage their account via some sort of dashboard. Many
management solutions in the API space have built-in developer
portals with these sort of functions, but if you were constructing
a quality presence yourself, what key factors would you make sure
not to leave out?

So, for this chapter we compared 10 successful public API programs
to see what attributes their developer centers have in common,
and distilled this research into seven main ingredients providers
should prioritize when creating a developer center. Whether or not
your API is free, monetized, or strictly B2B, all these items are going
to hold true for any usable kit.

Getting Started Guide

The goal of a getting started guide is to make the onboarding
process to ‘Hello World’ as quick and easy as possible. The best
developer centers outline a step-by-step process, guiding a user to
Register their app, acquire an access Token, and use these creden-
tials to initiate their first API Call. Twilio is king of the onboarding
department — their Quickstart SMS API guides purportedly get
developers up and running in a matter of minutes.

At this stage, also overview what other integrations your platform
offers. An API will bring the deepest integration capabilities, but
perhaps SDKs, webhooks, plugins, or widgets are more easily
accessible for some users. If you offer a suite of APIs, consider
helpful ways to organize them — the Google Map API picker does
this well.

Authentication Guide

All quality platforms dedicate time to explain the authentication
mechanisms required to access the API. Too often, authorization

https://developer.paypal.com/docs/api-basics/
http://nordicapis.com/reactions-to-using-the-twilio-api/
https://www.twilio.com/docs/quickstart
https://developers.google.com/maps/documentation/api-picker

Ingredients That Make Up a Superb Developer Center 34

relies solely on API keys, but as we’ve explained before, API keys
shouldn’t be a sole reliance when it comes to platform security.

Likely, your API will be using OAuth or a combination of OAuth
and ID tokens. After the client has registered their application, this
process enables an app to authenticate a user on their behalf. Most
platforms create a unique guide to OAuth 2.0 for developers unfa-
miliar with the workflow. Overview the token exchange process in
your own words or refer them to other OAuth resources for more
information.

For example, Spotify has a very detailed Authorization Guide
acting in tandem with their onboarding process. Some developers
interacting with end users will require varying scopes of autho-
rization to be granted, all of which flows should be document in
a digestible manner.

http://nordicapis.com/why-api-keys-are-not-enough/
http://nordicapis.com/api-security-oauth-openid-connect-depth/
https://developer.spotify.com/web-api/using-scopes/

Ingredients That Make Up a Superb Developer Center 35

Spotify authorization workflow for a long-running application

API Documentation

The reference is by far the focal point for all API developer centers.
Endpoint documentation is the main tool developers will have
in understanding precisely how your API behaves. A common
approach for structuring readable documentation is a 3-columned
arrangement: endpoint on the left, example call in middle, and
sample code in various languages on the right hand side.

These specs describe each resource accessible with an HTTP verb

Ingredients That Make Up a Superb Developer Center 36

(GET, POST, PATCH, or DELETE) in technical terms but also offer human-
readable description. This means outlining the following:

• Endpoint name (…/v1/user/data)
• Describe the endpoint’s purpose: what is the data or function-

ality?
• Describe the parameters used in the HTTP request to query

the API
• Show an example JSON formatted response
• Identify the kind of response (String, Boolean, Int, etc.).
• Type of authorization required

Aside from a few exceptions for SOAP/XML, most platforms use
RESTful designed web APIs and JSON formatted responses. For
rendering readable documentation, it may make sense to use a
specific API specification mode. For this you have options: Swag-
ger/OpenAPI spec, API Blueprint, or RAML are the three most used
specification formats.

In addition to specifying endpoint functionality, further API behav-
ior specific to design, like pagination, rate limiting, and error
codes are documented and made accessible from the developer
portal menu on these developer centers.

Testing Environment

The next pixel in our image of the perfect API involves having a
demo of API functionality so that prospective users can instantly
understand how the API behaves. This is often an interactive
console where sample HTTP requests are made to mock endpoints.
Spotify, along with many APIs in existence, offers such an interac-
tive API console accessible even before registration.

http://nordicapis.com/common-cases-when-using-soap-makes-sense/
http://nordicapis.com/top-specification-formats-for-rest-apis/

Ingredients That Make Up a Superb Developer Center 37

As with most software projects, debugging is a time-consuming
process. Therefore, many also offer a sandbox that simulates a
product environment using mock endpoints so developers can test
their integrations. The Paypal Sandbox for example, is a self-con-
tained virtual testing environment that allows developers to create
test accounts for user entities and make mock transactions between
customer and app. A user’s account Dashboard could be used to
track integrated apps, sandbox accounts, and live transactions.

For another example of an API demo, take what Postmates, the
programmable courier service, has done. They offer an interactive
API demo through Postman, a tool for developing, testing, and
sharing APIs. You can use the Postman Chrome web app to initiate
calls to an API endpoint.

Twitter similarly uses an Apigee test console to demonstrate API
behavior. Mailchimp takes a seperate route — their API playground
is not a sandbox, in that calls made using the account holder’s API
key do tally on their account usage report. If you chose this method,
communicate this stipulation openly to consumers.

Developer Resources

Developer resources are additional tools that aid the API inte-
gration experience. This includes code tutorials, sample code,
or Software Development Kits for integrating an API in the
programming language or OS of choice.

https://developer.paypal.com/developer/accounts/
https://www.getpostman.com/view-collection/e1f78bfe3a5b65fb82ba?referrer=https://postmates.com/developer/docs
https://dev.twitter.com/rest/tools/console
http://developer.mailchimp.com/documentation/mailchimp/guides/about-the-api-playground/

Ingredients That Make Up a Superb Developer Center 38

Alchemy API, for example, has specific guides for consuming their
REST API in Python, PHP, Ruby, and Node.js. Often community
maintained libraries emerge to consult programmers in their lan-
guage of choice, but taking ownership of the unique cases where
users interact with your REST API from the onset establishes trust
— maintaining your own code libraries and workflows helps ensure
consistency across the platform.

Support Channels

Great support is a crucial and all encompassing tenant to many
successful API programs. Below we categorize the type of support
offered by starling developer centers into two groups: status chan-
nels, and human support.

API Status Channels

Actively maintaining the following information is necessary for
any platform support, as it helps a prospective user gauge current
status, and an active user respond to updates. These ingredients
are prominently displayed throughout popular, high-use API pro-
grams:

• Uptime: details like percentage uptime, response time, and
history of past incidents.

• Changelog: timeline of changes made to the API.
• Issue tracker: feedback mechanism to track issues and sug-

gest changes.
• Versioning: If you plan to version your API (v1, v2, v3….),

include the historic API documentation, and plans for future

http://www.alchemyapi.com/developers/getting-started-guide/using-alchemyapi-with-python
http://www.alchemyapi.com/developers/getting-started-guide/using-alchemyapi-with-php
http://www.alchemyapi.com/developers/getting-started-guide/using-alchemyapi-with-ruby
http://www.alchemyapi.com/developers/getting-started-guide/using-alchemyapi-with-nodejs
http://nordicapis.com/what-languages-should-your-api-helper-libraries-support/
http://nordicapis.com/simultaneous-platform-wide-versioning-how-to-implement-api-to-sdk-synchronicity/

Ingredients That Make Up a Superb Developer Center 39

updates. Communicate a deprecation policy from the onset,
and clearly denote when any new changes will go into effect.

Mailchimp updates their developer userbase with a bold community announce-
ment

Human Support

Static pages can be useful, but when was the last time an FAQ actu-
ally catered to your unique technical dilemma? The best developer
portals offer instant help through human-human support methods.

We write a lot on developer relations, and for a good reason;
increasing the positive experience a developer has with your API
is absolutely paramount. It’s no wonder that active engagement on
StackOverflow, aGoogle Group,Developer Twitter handle, and
of course a Developer email are tools used by most on our top 10
list. Surprisingly still, many big name APIs could do their developer
relations a lot better if they embraced instant chat windows with
provider support representatives.

Google’s comprehensive developer outreach strategy

Google has this department on lockdown. They have an active Issue
tracker, Stackoverflow forum, Github, dedicated developer Twitter
account, and Developer blog. It’s also important to also have a
feedback mechamism in place — know what questions to ask, how
to ask them, and iterate on the information you recieve.

http://nordicapis.com/api-lifecycle-retirement-stage-a-history-of-major-public-api-retirements/
http://nordicapis.com/accumulating-feedback-4-questions-api-providers-need-to-ask-their-users/

Ingredients That Make Up a Superb Developer Center 40

Platform Policy

Have. A. Readable. Terms. of. Use. Period.

Yes, platform policy legalize in this setting will likely be lengthy. Let
the lawyers do their bidding, but when they’re finished, summarize
the main Restrictions and allowed API use cases in a bulleted list
that users will actually read.

Another thing well-established developer centers do well is protect-
ing their brand identity — in fact, extending brand image may be
the sole business advantage to exposing a free API. Brand guide-
lines often specify required conditions for naming, logo placement,
color pallette, and more. Spotify, for example, even specifies the
padding between their logo and app foreground space to ensure
their identity is spotlighted.

Spotify’s brand guidelines

Cater Your Home Presence to
Non-Developers Too

As the API economy grows, so will the general public awareness of
them increase — especially now that IPOs from CA Technologies,
Apigee, and Twilio are bringing API strategy into the public do-
main. Therefore, web presences must evolve to meet new audiences.
Twilio recognizes this, and offers a rebranded home page entitled
“Not a Developer” with helpful resources for non-devs, as well as
options for working with partners.

General use cases that display the end consumer experience are
helpful because they inspire entrepreneurs. In the same vein, citing

http://nordicapis.com/tracking-the-growth-of-the-api-economy/
http://fortune.com/2016/05/26/cloud-software-twilio-public/
https://www.twilio.com/not-a-developer

Ingredients That Make Up a Superb Developer Center 41

sample apps that are already using your API in the live establishes
credibility, acting as testimonials. Uber does both well, with hypo-
thetical example integrations and live apps as samples:

Potential Uber API use case

Establish credibility with example API consumers

Don’t assume your visitor is completely accustomed to lingo. Con-
cepts relating to APIs — take HATEAOS — may appear foreign
to even some experienced programmers. Adam Duvander recently
went as far to say that APIs are mainly for “non-developers with a
business problem”.

Thus, making these front-facing entities accessible is an important
trick to bringing APIs to the masses. Pitney Bowes showcases their
suite of APIs very well to non-programmers, with digestible video
descriptions for each specific API product.

Final Thoughts

These seven concepts are arguably the bread and butter to sus-
taining any developer user — the building blocks to creating a
consumable API. Of course every SaaS business will have it’s own
requirements that will require a unique perspective.

What other ingredients must your public-facing developer portal
have? If you are implementing these seven general concepts, than
you will likely require some sort of account dashboard for account
management like billing and usage monitoring. For all the ingredi-
ents mentioned, carefully worded page descriptions using targeted

https://medium.com/every-developer/apis-dirty-little-secret-24ad7deda1c4#.kf0f1ijvv
https://medium.com/every-developer/apis-dirty-little-secret-24ad7deda1c4#.kf0f1ijvv
http://developer.pitneybowes.com/

Ingredients That Make Up a Superb Developer Center 42

keywords can help optimize your API home page, making it more
discoverable for search engines.

In this study we reviewed what some of the developer darling API
programs have already done to structure their service — but your
case is unique. Prioritize what tools your unique consumers need,
and build out intelligent developer centers that both inform and
inspire creativity.

http://nordicapis.com/tips-to-improve-the-discoverability-of-your-api/

Crafting Excellent API
Code Tutorials that

Decrease On-boarding
Time

The success or failure of an API program is made by any number
of things: The business value of the product or platform the API
exposes, the ease of use of the API, or the number of ways it can be
used. However, core to getting an API program right is delighting
the developer by ensuring they have what they need to get their
job done. At the heart of this effort are code samples, cookbooks
and code tutorials that provide this knowledge by example. An
excellent tutorial that decreases the time to get up and running
with an API adds massive benefits for all concerned: To the API
consumer and their development team, who’ll report on how good
the API is and how easy it was to create their software integration,
and also reputational value for the API provider themselves.

In this chapter we take a look at what makes a great API tutorial
and what it takes to transfer your important API knowledge to your
developer community. Like a story, which has a beginning, middle
and end, an API tutorial has three distinct parts that help create a
narrative on how to use an API:

• Setting the context;
• Exploring the details;

Crafting Excellent API Code Tutorials that Decrease On-boarding Time 44

• Creating an application.

Throughout we’ll explore each of these parts in turn, citing several
quality tutorials that you can model when constructing your own
development guides.

Setting the Context

First and foremost, an API tutorial needs to reassure the reader that
they are in the right place: visitors will likely understand what they
need to accomplish functionally, but they may not yet be aware of
the implications of integrating, and may not realize all your API
has to offer.

For example, when choosing between the several Twitter APIs,
a developer will need to make a choice between RESTful and
streaming versions of the API. Alternatively, different APIs may
have different security models and developers will need to be aware
of what the impact of implementing one API over another may be.

Setting the context means devoting words to explaining to the
reader the significance of creating an integration with an API,
the skill level and provisioning status required, and what type
of behaviors should be exhibited. Though this section won’t be
exhaustive it still should include:

• Reinforcement of the subject matter: The tutorial should
first reaffirm what the API does and what the developer
can accomplish using the tutorial, with introduction of the
core technological themes that will be introduced throughout,
including programming language used, level of experience
required, and security architecture. For example, this tutorial
on Instagram exemplifies this point by keenly focusing the
mind on the objective at hand;

https://dev.twitter.com/overview/documentation
http://nordicapis.com/api-insights/security/
http://code.tutsplus.com/tutorials/introduction-to-the-instagram-api--cms-23608
http://code.tutsplus.com/tutorials/introduction-to-the-instagram-api--cms-23608

Crafting Excellent API Code Tutorials that Decrease On-boarding Time 45

• On-boarding requirements: The developer needs to know
what is required to begin the tutorial. Do they need an
API key? Is a user account involved? Is there a generic test
account? Are there test card numbers, magic numbers a la
the Twilio API? A sandbox with a complete data set? The
questions are obviously specific to the API itself, but should
be in the form of an easy-to-use checklist with links to both
the resources that explain or expand on each point in the
list or where the developer can act on the information pro-
vided. This Facebook API integration tutorial from Appery
demonstrates well the kind of information required, with a
series of screenshots describing how to register an application
on Facebook (a pre-requisite to making an API call). The
Braintree Getting Started guide also provides an excellent
example;

• Runtime behaviors. Finally, the developer needs to know
about any restrictions the API places on usage, such as limit-
ing connections, consumption rates or throttling throughput.
Providing this information prior to starting the tutorial will
ensure developers understand how such behaviors will affect
the design of their application and how to mitigate for them.
Again, the tutorial does not need to cover the details in full
but should provide links to more information.

Armed with this information the developer should have the neces-
sary context to start exploring the API in detail.

Exploring the Details

With the context set it’s tempting to dive straight into creating a
solution and letting developers understand the API from the source
code of a built solution. However, if an API tutorial is going to
achieve the goal of decreasing on-boarding time it needs to be

https://www.twilio.com/docs/api/rest/test-credentials
https://devcenter.appery.io/tutorials/jqm/build-an-app-with-facebook-api/
https://developers.braintreepayments.com/start/overview
http://nordicapis.com/optimizing-apis-for-mobile-apps/

Crafting Excellent API Code Tutorials that Decrease On-boarding Time 46

inclusive and address the majority of audiences; not just those with
skills and capabilities to decipher the important information from
the code.

Rather, help usersunderstand the codewith a series of explanatory
statements accompanied by code snippets which build up a com-
plete picture of the API integration from nothing to a successful API
call. The snippets need not amount to a working application, but if
all were pulled together they should amount to something close to
a working package, class or script (depending on the technology
you’re using in the course of the tutorial) — building towards the
complete solution discussed in the next section. Developers with
more advanced skills are obviously welcome to skip the exploration
section and go on to the completed solution.

The snippets themselves should exhibit a number of important
characteristics:

• Explain what packages or libraries are involved: This will
give the reader a better idea of what they need to understand
alongside the API or allow them to correlate them with alter-
natives that they may already use. For example, if you use an
OAuth package or library briefly explain why you chose that
particular one and the benefits it delivers to developer;

• Dare to be verbose: The majority of developers write code
and then refactor it to make it as terse as possible: Indeed, it’s
one of the things that generally puts a smile on a developer’s
face. However, such terseness can be challenging for junior
developers to understand: Moreover, you will be talking to
developers in the tutorial who aren’t experienced in the
language it’s written in, but need to use it as a reference
for implementing their application in their own language of
choice (Whilst some API providers like Twilio can provide
tutorials in several languages, not all API providers have the
resources available to do this). For example, if a Python list
comprehension can be understood better by more developers

https://www.twilio.com/docs/tutorials
https://www.twilio.com/docs/tutorials

Crafting Excellent API Code Tutorials that Decrease On-boarding Time 47

through verbose syntax consider doing so:

1 # Less Pythonistic but easier to understand for a non-Pyt\

2 hon developer

3

4 verbose_payments_list = list()

5

6 for payment in payments:

7 If payment.amount > 0:

8 payments_list.append(payment)

9

10 # More Pythonistic approach:

11

12 terse_payments_list = [payment for payment in payments if\

13 payment.amount > 0]

• Comments, comments, comments: Ensure the snippets con-
tain lots of comments or are well annotated with text that
clearly labels the intentions of your code. Continuing the
theme of verbosity, comment more than you normally would
to guide the reader through each step. A great is example is
this Rails tutorial on Stripe integration, which clearly explains
the purpose of each snippet.

Creating an Application

The final step in a building a great tutorial is bringing what you’ve
explained to life by creating an application that a developer can
actually run. Depending on the depth and detail of the solution
itself this could be a simple code snippet, gist, GitHub project, or a
Docker image that can be executed with minimal effort on the part
of the developer. Naturally you are not going to walk through the

http://www.munocreative.com/nerd-notes/winvoice

Crafting Excellent API Code Tutorials that Decrease On-boarding Time 48

entire solution in the tutorial, so make sure you summarize it with
a few well chosen screenshots.

The bounds of your application are entirely dependent on your
imagination, skills and the needs of your developer community, but
you should look to do the following:

• Ensure it can be run in a minimal number of steps;
• Like the code snippets, insert a full range of comments and

pointers that explain the significance of the implementation;
• Demonstrate a really compelling use case for your API.

Ensuring your application demonstrates these features will really
help in concluding your tutorial and ensuring all the points you’ve
raised are reinforced.

Final Thoughts

We’ve explored what makes a great API tutorial and have high-
lighted the core themes that make it easy for your developer
community to comprehend and digest the key information about
your API.

It goes without saying that not every API tutorial will exhibit
everything discussed here; however, if you focus on the points
raised you should succeed in creating a compelling narrative that
not only holds the reader’s interest but does meet the goal of
decreasing the time it takes to on-board into your API program.

What is the Difference
Between an API and an

SDK?

Understanding the difference between an API (Application Pro-
gramming Interface) and an SDK (Software Development Kit), and
knowing when to provide each, is incredibly important for fostering
a developer ecosystem. In the modern development landscape,
these two tools and the synchronicity between them are the driving
force behind web communicatoin and the implementation of third
party APIs.

Accordingly, it helps to know what exactly we mean when we talk
about APIs and SDKs. In this piece, we will attempt to create an
inclusive definition of both concepts. We will give an example of
each, explain how they interact with one another, and find how an
API provider can effectively implement one or both of these tools
to improve their offering and end developer usability.

Define: API

An API is simply an interface that allows software to interact
with other software. This is part of its name — API, Application
Programming Interface — and is core to its functionality. Think of
an API as a rosetta stone, a tablet by which two vastly different

http://nordicapis.com/simultaneous-platform-wide-versioning-how-to-implement-api-to-sdk-synchronicity/0

What is the Difference Between an API and an SDK? 50

languages, two different instruction sets, can be translated and
transferred for mutual understanding.

APIs come in many shapes and sizes. The
browser that a reader would likely use
to peruse the Nordic APIs website uses a
variety of API sets in order to convert user
commands into usable functions, request
data from servers, render that data into a
viewable format for the user, and validate
the performance of their requests.

Even something as simple as copying and pasting on a computer
utilizes an API. Copying text converts a keystroke into a command,
data is stored into RAM on the clipboard utilizing an API, the data
is then carried from one application to another using that same API,
and finally, data is rendered when pasting using yet another API.

On the world wide web, the API takes on a slightly different func-
tion. Web APIs allow for interaction between disparate systems,
often for specific use cases. For instance, when a user interacts on
Twitter, they’re utilizing an API to comment, to store their data, to
follow a user, to delete tweets, and so forth. Ultimately, a web API
is simply a set of instructions, just like the personal computer API,
but based in the web space.

Perhaps most important is the fact that APIs allow for consistency.
In the early years of programming, the computer was a wild west of
commands and instructions, loosely coded and rarely documented.
With the advent of modern computing, APIs have allowed for
consistent coding in stable environments, allowing for replicable
functions to be delivered the same every time the request is submit-
ted with reliability and predictability.

What is the Difference Between an API and an SDK? 51

Define: SDK

SDK stands for “Software Development
Kit”, which is a great way to think about
it — a kit. Think about putting together
a model car or plane. When constructing
this model, a whole kit of items is needed,
including the kit pieces themselves, the
tools needed to put them together, assem-
bly instructions, and so forth.

An SDK or devkit functions in much the
same way, providing a set of tools, libraries, relevant documenta-
tion, code samples, processes, and or guides that allow developers
to create software applications on a specific platform. If an API is
a set of building blocks that allows for the creation of something,
an SDK is a full-fledged workshop, facilitating creation far outside
the scopes of what an API would allow.

SDKs are the origination sources for almost every program a
modern user would interact with. From the web browser you work
on all the way to the video games you play at the end of the day,
many were first built with an SDK, even before an API was used to
communicate with other applications.

Squares and Rectangles

Part of the confusion behind the difference between APIs and SDKs
is the fact that, more often than not, an SDK contains an API. In
geometry, “rectangles” is inclusive of both rectangles and squares,
whereas “squares” is inclusive only of squares.

What is the Difference Between an API and an SDK? 52

The same is true with APIs and SDKs. By
definition, an SDK is a kit that includes in-
structions that allows developers to create
systems and develop applications. APIs,
on the other hand, are purpose built for
an express use — to allow communication
between applications.

It should be no surprise then that, when an
SDK is used to create an application that
has to communicate to other applications,
it includes an API for this functionality. In-
versely, an API is used for communication,
but cannot be used solely to create a brand new application.

Another way to understand this is to think in terms of houses. APIs
are telephone lines, allowing for communication in and out of the
house. The SDK is the house itself and all of its contents.

Examples

Luckily, we have a great example of the difference between an API
and an SDK in the Facebook suite of solutions. Because this suite
provides tools for both active users and developers, it includes both
an API and an SDK, each with different functionalities and use
cases.

Facebook APIs

Used internally and with third party application providers, the
Facebook API allows for communication across the wide Facebook
social platform, and utilizes the social connections and profile infor-
mation data points of every Facebook user to conduct application
functions.

What is the Difference Between an API and an SDK? 53

These functions include pushing activity to “news feeds” and
“profiles” on the main Facebook site, but also include third party
application functions such as registering for external sites and
subscribing to media outlets. Page, photo, event, friend, and group
data is collected and collated and used to form meaningful and
useful connections that increase the extensibility of the service.

The API also allows for the limiting of this data sharing on a per
user basis, allowing for users to limit their profile content and
the use thereof. This integrated security allows for extensive use
of multiple data points and resources while still maintaining high
privacy and security levels.

The functionality of this API extends beyond internal usage, how-
ever. One of the greatest strengths of the API is the tie-in to the
Graph API Explorer. This service allows for the observation of
relational data between users, photos, accounts, feeds, and more.
This sort of analytic generation is incredibly powerful — as we’ve
previously stated, metrics is one of the most powerful assets an API
provider can have.

1 GET graph.facebook.com

2 /me?

3 fields=albums.limit(5){name, photos.limit(2){name, pi\

4 cture, tags.limit(2)}},posts.limit(5)

Here we see a sample API issuance. In this call, the API is used
to request a user’s photo, the URL the photo generates, and all
the people tagged in the photo. While this is a rather simple use,
consider the possibilities — a restaurant manager or even host could
use this API call to generate a list of users in a photo shot at a
specific engagement, generating a list of social accounts they can
reach out to for further publicity or promotion. Try doing that
without the API!

Graph API isn’t the only API in town, either. Facebook also
provides the Marketing API, designed specifically to allow brands

https://developers.facebook.com/blog/post/517/0
http://nordicapis.com/success-vs-failure-the-importance-of-api-metrics/
http://nordicapis.com/success-vs-failure-the-importance-of-api-metrics/
https://developers.facebook.com/docs/marketing-apis

What is the Difference Between an API and an SDK? 54

to craft engaging and effective social campaigns for their products.

This API not only shows how powerful the Facebook platform is,
but how powerful properly structured API design can be. Because
the Marketing API primarily drives advertising campaigns, the
structural design reflects this purpose, and is laid out in such a way
as to inspire proper campaign design as a secondary benefit.

The benefit of this structure can be seen in how the Marketing API
deals with optimized effective CPM. CPM, or “cost per mille”, is a
concept wherein actions are given a value and interaction is given a
cost. These costs can be best optimized by the advertiser to prioritize
marketing goals and deliver ads in the most effective and efficient
way possible.

1 use FacebookAds\Object\AdSet;

2 use FacebookAds\Object\Fields\AdSetFields;

3 use FacebookAds\Object\Values\BillingEvents;

4 use FacebookAds\Object\Values\OptimizationGoals;

5

6 $adset = new AdSet(null, 'act_<AD_ACCOUNT_ID>');

7 $adset->setData(array(

8 AdSetFields::NAME => 'My Ad Set for oCPM',

9 AdSetFields::BILLING_EVENT => BillingEvents::IMPRESSION\

10 S,

11 AdSetFields::OPTIMIZATION_GOAL => OptimizationGoals::LI\

12 NK_CLICKS,

13 AdSetFields::BID_AMOUNT => 150,

14 AdSetFields::CAMPAIGN_ID => <CAMPAIGN_ID>,

15 AdSetFields::DAILY_BUDGET => 1000,

16 AdSetFields::TARGETING => array(

17 'geo_locations' => array(

18 'countries' => array(

19 'US'

20),

21),

22),

http://nordicapis.com/api-insights/design/
http://www.investopedia.com/terms/c/cpm.asp

What is the Difference Between an API and an SDK? 55

23));

24

25 $adset->create(array(

26 AdSet::STATUS_PARAM_NAME => AdSet::STATUS_PAUSED,

27));

In this example, the Marketing API has created a campaign that can
be bid upon under constraints set up by the campaign budget values.
This dynamic bidding makes for a very powerfully optimized
system that captures the highest-value impressions and establishes
a value that makes sure the ROI ratio of input to expense isn’t
exceeded.

A dynamic bidding system allows for the best return on the dollar
— this is the power of a properly crafted API, allowing for complex
interactions and manipulations above and beyond what any portal
or internal page could deliver on its own.

Facebook SDKs

We can see the main difference between SDKs and APIs in their ex-
pressed functions. While the previously mentioned APIs are clearly
designed for interaction between applications and campaigns or
other applications, the SDKs provided by Facebook are clearly
designed for the creation of these applications.

Let’s look at the Facebook SDK for iOS. Designed specifically to
allow for the development of Facebook applications for iOS, the
SDK is fully featured, allowing for a multitude of functions to be
defined and called.

As a basic example, the following code snippet is from the SDK
reference guide for iOS:

https://www.entrepreneur.com/encyclopedia/return-on-investment-roi
https://developers.facebook.com/docs/ios

What is the Difference Between an API and an SDK? 56

1 // AppDelegate.m

2 #import <FBSDKCoreKit/FBSDKCoreKit.h>

3 - (void)applicationDidBecomeActive:(UIApplication *)appli\

4 cation {

5 [FBSDKAppEvents activateApp];

6 }

This example allows for the logging of application activations,
and is thus one of the more basic possible examples to provide.
Nonetheless, one can see the difference between an API and SDK in
the basic structure of the calls. While the API calls existent sources
and functions to perform an action already defined, the SDK is used
to first define this function and to create a way to call the source
and function.

The Android SDK is much the same, but translated into the lan-
guage of the Android OS. Further changes can be seen in the Web
SDKs, such as the JavaScript SDK, which utilizes JavaScript to
perform the same basic function building as the iOS and Android
SDKs.

The SDK is the building blocks of the application, whereas the API
is the language of its requests. This is an apt description, “building
blocks”, which is made abundantly obvious when one looks at what
an SDK contains. Libraries from which to build functionality, code
samples for increased understanding and easier implementation,
and references for easy linking and explanations — without any of
these, an application or service might be functional, but it certainly
would be severely hampered.

Of key interest is the fact that our analogy still holds — the API
references existing functions and calls, while the SDK calls the API.
See this following example code from the SDK reference guide:

https://developers.facebook.com/docs/android
https://developers.facebook.com/docs/javascript

What is the Difference Between an API and an SDK? 57

1 FB.ui({

2 method: 'share_open_graph',

3 action_type: 'og.likes',

4 action_properties: JSON.stringify({

5 object:'https://developers.facebook.com/docs/',

6 })

7 }, function(response){

8 // Debug response (optional)

9 console.log(response);

10 });

This code creates a share dialog that pops up over the application
page when an action is performed, and publishes an Open Graph
action which can then be tied into the greater ecosystem and used
to generate complex relationships and metric data.

Apples and Oranges

Realistically, the comparison between API and SDK is often confus-
ing only because of how far they overlap — a problem only com-
plicated with the addition of new methodologies for organization
and segmentation, such as Docker containers, which require their
own specific API and SDK documentations. To simplify the concept,
remember the following:

• SDKs usually APIs; no APIs contain SDKs.
• SDKs allow for the creation of applications, as a foundation

allows for the creation of a house;
• APIs allow for the functioning of applications within the

SDKs defined parameters, like the phone lines of a house.

With this basic understanding, and a few key code examples, the
difference between SDKs and APIs should now be obvious.

http://nordicapis.com/docker-containers-and-apis-a-brief-overview/

Developer Resources:
SDKs, Libraries, Auto
Generation Tools

Shipping a great API isn’t just about exposing an endpoint in
a RESTful manner. Yes, plenty of developer users will be fine
making HTTP requests, but for some, that is not enough. Whether
community curated or vendor supplied, code libraries are often
created to help extend an application programming interface — API
— into specific languages. These libraries help onboard third party
users and demonstrate that you’re willing to work on their home
turf.

In this chapter we examine the importance of helper libraries and
how they affect your audience. We determine what languages
you should try to support, backed by research into API library
language trends across various industries, tuning into what players
like Twilio and Stripe are doing right. We’ll describe the difference
between an API and SDK, and see how we can automatically
generate code libraries using APImatic and RESTUnited.

What Are Helper Libraries?

Helper libraries are developer resources that allow a developer
to call an API within the language they are most familiar with,
whether it be C#, Ruby, Node.js, Scala, Go, Clojure, Objective-C, or

https://apimatic.io/
https://restunited.com/

Developer Resources: SDKs, Libraries, Auto Generation Tools 59

many others. Helper libraries, code libraries, wrappers, Ruby gems,
Python bindings, Node.js modules, and Software Developer Kits
(SDKs) all help in this regard.

Why Not Just Let Them REST?

Usually, the Uniform Resource Locator — URL — is a friend,
allowing access to a specific resource and enabling software to
leave isolated environments. The existence of URLs have enabled
the Internet, along with an incredible array of products to thrive.
However, accessing resources from something other than a web
browser can be a complete pain. A cURL POST request to the
Twilio API asking to send a text message, for example, may look
something like:

1 $ curl -XPOST https://api.twilio.com/2015-11-09/Accounts/\

2 AC5ef823a324940582addg5728ec484/SMS/Messages.json \

3 -d “Body=Jenny%20please%3F%21%20I%20love%20you%20<3” \

4 -d “To=%2B1415924372” \

5 -d “From=%2B424572869” \

6 -u ‘AC5ef823a324940582addg5728ec484:{AuthToken}’

This type of request is machine readable, but it involves a lot
of encoding and rare symbols to print a relatively simple phrase.
Enter REST — a way of building web services by following a
set of specific constraints between consumers and providers. The
specification describes ways to interact with URLs in a handy and
comprehensible method.

However, even if an API is RESTful, the Ruby code required for
a POST request to initialize a URI is still clunky. Here is a POST
request written in Ruby to access the Rackspace API:

http://nordicapis.com/rest-better-than-soap-yes-use-cases/

Developer Resources: SDKs, Libraries, Auto Generation Tools 60

1 uri = URI.parse(‘https://auth.api.rackspacecloud.com”)

2 http = Net::HTTP.new(uri.host, uri.port)

3 http.use_ssl = true

4 http.verifiy_mode = OpenSSL::SSL::VERIFY_NONE

5 request = NET::HTTP::Post.new(‘/v1.1/auth”)

6 request.add_field(‘Content-Type’,’application/json’)

7 request.body = {‘credentials’ => {‘username’ => ‘username\

8 ’, ‘key’ => ‘key’}}

9 response = http.request(request)

All this is doing is establishing a connection and verifying creden-
tials. However, if something goes wrong with this request, results
things can easily become messy. Most people are aware of HTTP
404 error code (Not found), but there are over 80 other total HTTP
error codes specified, and each API’s response behavior is different
according to how extensive the provider has chosen to be. Dealing
with error codes is a pain, so software engineers have often chosen
to abstract and wrap in a method, another reason for adopting
helper libraries.

Data Problem

API providers also need to embrace conventions, and consider what
data formats are being used. For example, when you have to send
dates, what date standard are you using? Perhaps your service
uses a different log than base 10. When users are browsing your
documentation, they need to understand it in the scope of their
own languages.

This is where helper libraries come into play. Just exposing an
HTTP resource is fine, but we need to give developers a bit more
help. For example, using a Ruby gem for the Twitter API:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Developer Resources: SDKs, Libraries, Auto Generation Tools 61

1 client = Twitter::REST::Client.new do |config|

2 config.consumer_key = "YOUR_CONSUMER_KEY"

3 config.consumer_secret = "YOUR_CONSUMER_SECRET"

4 config.access_token = "YOUR_ACCESS_TOKEN"

5 config.access_token_secret = "YOUR_ACCESS_SECRET"

6 end

7

8 client.update(“I’m tweeting with @gem!”)

This simple code found on Github initializes the helper object, and
uses it to send a tweet “I’m tweeting with @gem” to Twitter —
library. It handles everything we don’t want to care about.

Programming Language Trends

So you’re convinced you need to construct helper libraries for your
developer consumers — but now comes the moment of truth. How
do we decide which languages to support? Do we address 30+
languages?

To narrow things down, let’s take a look at a couple sources.
VentureBeat cites the top 10 languages used on GitHub as:

https://github.com/sferik/twitter
http://venturebeat.com/2015/08/19/here-are-the-top-10-programming-languages-used-on-github/

Developer Resources: SDKs, Libraries, Auto Generation Tools 62

Adam Duvander , using ProgrammableWeb data, has cited the top
languages used for API helper libraries as:

1. PHP
2. Python
3. Ruby
4. .NET / C#
5. Java
6. Perl
7. ColdFusion
8. Node.js
9. ActionScript

Discover What Languages Your
Consumers are Using

Regardless of industry trend, the most important step is to listen to
your developer consumers — they have likely already told you what
languages to add. Discovering this is relatively simple — perform

https://twitter.com/adamd
http://www.programmableweb.com/news/what-programming-language-most-popular-apis/2013/06/03
http://nordicapis.com/how-to-understand-your-target-api-consumer/

Developer Resources: SDKs, Libraries, Auto Generation Tools 63

monitoring of the HTTP requests to your server. If you are logging
those requests (hopefully this is already the case), then you can
easily figure out the user agent for those requests to determine what
programming language they are using. Should look like this:

1 curl/7.31.0

2 PHP_Request/curl-7.15.5

3 Java/1.6.0_31

Developer users are your customers. Al-
ways respect the fact that your users code,
meaning they could always do your job
and write their own API if need be. Es-
pecially in the case of Twilio, their de-
velopers are consuming their API as a
time saving mechanism, so the developer
experience needs to be as easy as possible. Log activity, determine
what your consumers are using, and create developer resources
accordingly.

Who Should we Model?

Here is some self-collected data on what languages significant API
vendors support for libraries/SDKs across various industries. Twilio
has a great outreach library program, as does Stripe. It’s important
to note that many helper libraries live in the open source and
Github realm — meaning that many libraries are maintained by the
surrounding community, perhaps not even touched by the provider
themselves.

http://nordicapis.com/why-api-developer-experience-matters-more-than-ever/
http://nordicapis.com/why-api-developer-experience-matters-more-than-ever/
https://stripe.com/docs/libraries

Developer Resources: SDKs, Libraries, Auto Generation Tools 64

Provider Official Community Helper Library
Home Page

Twilio API PHP, Ruby,
Python,
C#/.NET, Java,
Node.js

Go, JavaScript,
C++, Scala, Perl,
Erlang, Adobe
ColdFusion,
Adobe,
LiveCycle, Mule
ESB

Libraries

Twitter API Java, Android ASP, C++,
Clojure,
ColdFusion, Go,
Java, Node.js,
Lua/Corona,
Objective-C,
Perl, PHP,
Python, Ruby, C,
.NET, Erlang,
Java, many
more.

Twitter
Libraries

Box API Java, Python,
.NET, Ruby,
Mobile (iOS,
Android,
Windows)

APEX SDKs

eBay API .NET, Java,
Python

(eBay SDKs

FitBit API Java, PHP, .Net Dev Center
Square API Java,

Objective-C,
JavaScript, Ruby

Open Source
Libraries

Stripe API Python, Ruby,
PHP, Java,
Node.js, Go,

Ruby, PHP, C#,
ColdFusion,
Perl, Clojure,
Scala, and more.

Internal API
Libraries

https://www.twilio.com/docs/libraries
https://dev.twitter.com/overview/api/twitter-libraries
https://dev.twitter.com/overview/api/twitter-libraries
https://developers.box.com/sdks/
https://go.developer.ebay.com/ebay-sdks
https://dev.fitbit.com/
http://square.github.io/#other
http://square.github.io/#other
https://stripe.com/docs/libraries
https://stripe.com/docs/libraries

Developer Resources: SDKs, Libraries, Auto Generation Tools 65

HTTP is Language Agnostic

With HTTP you can browse the web, make a REST request, hack
Snapchat, or make SOAP requests. But helper libraries need to
be Language Idiomatic. A Python developer doesn’t care if your
libraries behave the same way — they must behave in a way that
makes sense for that specific language.

Python example using Twilio’s REST client:

1 client = TwilioRestClient(“accountSid”, “authToken”)

2

3 message = client.messages.create(to=”+12316851234”,

4 from_=”_15555555555”,

5 body=”Hello there!”)

On the other hand, C# needs to look and behave like C#:

1 var twilio = new TwilioRestClient(“accountSid”, “authToke\

2 n”);

3

4 var msg = twilio.SendMessage(“+15554446666”,

5 “+15557778888”,

6 “that was easy!”);

5 Tips for Helper Library Design

• Keep Vocabulary consistent with documentation: Though
client libraries need to be catered to the doctrine of the
specific language in mind, they still must be consistent with
your REST API documentation and parameter vocabulary.
These terms should be coherent across all resources that
integrate with your platform. Being idiomatic with languages
is important, but terms and features need to be consistent.

http://www.theverge.com/2014/10/13/6958745/is-snapchats-api-too-easy-to-hack
http://www.theverge.com/2014/10/13/6958745/is-snapchats-api-too-easy-to-hack
http://nordicapis.com/top-specification-formats-for-rest-apis/

Developer Resources: SDKs, Libraries, Auto Generation Tools 66

• Surface Area: How much of your API should your helper
library cover? The answer is all. Wawra recommends to
marry the API with the web representation. This means that
all functions your website can do, your API should handle
as well, and in turn your helper library as well. If you are
using an API-first building strategy, this becomes a lot more
intuitive.

• Simultaneous platform-wide publishing and updates: There
is no point in versioning your API or adding new features if
your helper libraries are not in sync with updates. The rule
of thumb is, for your officially maintained libraries, release
changes to API functionality across documentation and all
libraries simultaneously.

• TEST: Treat your helper library as a product, and test just as
vigorously as you would your API.

• Open Source: It’s not a strategy for every company, but API
developers love Github, and providers can benefit from the
community aspect of open-sourcing their library. Creating
a community around your APIs and libraries encourages
improvement to the code.

Last Line of API Code: Your API is
Never Really Finished

At the end of the day, the helper library that you ship will live on the
user’s app. Since it is in the user’s app — you have limited control.
However, developers are always creating new apps, meaning that
your API is never truly finished. Having an agile mindset with
constant iteration is crucial.

http://nordicapis.com/why-you-should-build-apps-with-an-api-backend-baas/
http://nordicapis.com/5-benefits-of-using-virtualization-to-test-your-api/
http://nordicapis.com/why-api-devs-love-github/
http://nordicapis.com/why-api-devs-love-github/
http://nordicapis.com/what-makes-an-agile-api/

A Human’s Guide to
Drafting API Platform

Policy

There are some languages in the world that are tough to master and
for your average application developer none more so than Legaleze,
a language so inaccessible that only a learned few can speak it
fluently. The diction and terminology is generally so difficult that
most don’t even attempt to learn: When presented with an API’s
terms of use or platform policy, most developers simply click ‘I
accept’ and get on with coding.

OK, so this description of the language found in legal documents is
meant to be tongue in cheek, but it’s amazing how organizations in
general expect non-lawyers to make informed decisions on whether
or not they can accept lengthy terms of use. Deciphering such
documents often involves collaboration between a lawyer and a
software developer, which is less than ideal given there is room
for error or misinterpretation as one attempts to inform the other
(lawyers who are also software specialists being a rare, expensive
commodity). There are even websites such as Terms of Service;
Didn’t Read dedicated to evaluating the terms of use of major web
apps to help users combat what TOSDR calls “the biggest lie on the
web.” Failing to digest the small print correctly could result in the
organization falling foul of a clause in the terms of use that could
be passed on directly to their customers.

The blind acceptance of an API’s terms and conditions presents

https://tosdr.org/
https://tosdr.org/

A Human’s Guide to Drafting API Platform Policy 68

an interesting quandary for anyone running an API program. One
could simply take a caveat emptor view and not lose any sleep over
whether a consumer reads the small print. However, one could also
view incomprehensible terms and conditions as a lost opportunity:
If an existing customer disregards the small print, are prospective
customers being put off? In this chapter we’ve put together a
practical guide on creating anAPI platform policy, including what
items to include and how to convey the most vital information. By
the end of the article you should have an idea of how to present
your policy so your customers actually read and understand it, with
the goal being to ensure an application developer can move from
discovery to development as quickly as possible.

Key Themes

Nearly every API provider publishes one or more legal documents
that define the terms and conditions under which their API can be
used. These documents can include any of the following:

• Terms of Use;
• Privacy Policy;
• Terms of Service;
• Cookie Policy (for a developer portal).

Legal documents such as these are common in all sectors of
technology, and collectively they define a contract between the
API provider and consumer, specifying the legal obligations of each
upon each other. Whether you sign a piece of paper or simply
start using the API, as a consumer you are bound by this legal
contract. One could simply say “why bother with contracts”, but
this is not a tenable position: The need to define legal contracts for
using an API covers a myriad of different subject areas including
intellectual property, data protection, regulatory obligation, and of
course commercial agreements where access to the API is paid for.

A Human’s Guide to Drafting API Platform Policy 69

When drafting an API platform policy of your own it’s important
to understand that these documents tend to cover several key
underlying themes, namely:

• Defining responsibilities;
• Setting expectations;
• Describing good behavior.

Given the realities of legal systems it’s difficult to make these points
bubble up to the attention of the developer (as Stripe reflects upon
in their terms of use. However, it’s paramount that these themes
are drawn out to pique the interest of the API consumer and ensure
they’ve either consciously accepted the terms and conditions they
are signing up to, or have drawn it to the attention of their
organization’s legal team.

Defining Responsibilities

Almost all legal documents start with a definition of the responsi-
bilities of all the parties involved in the contract and API platform
policies are no exception. A traditional legal contract will contain
several sentences with prescriptive definitions of terms like ‘You’
and ‘Us’: If possible, keep these terms in core legal documentation
but summarize the key points with sufficient brevity to keep the
reader’s interest. The level of brevity required is demonstrated
well by Instagram, who use a numbered General Terms section to
clarify for the API consumer what they absolutely need to know
whilst keeping the more lengthy terms of use in the background.
It’s important to “dumb down” the key points in this way to
highlight the responsibilities that have the greatest impact on the
API consumer. As we’ve seen before, Instagram actively pursues
taking down consumers who breach their terms, therefore they
phrase their agreement in plain English to ensure consumers know
exactly what they can and cannot do with the Instagram API.

https://stripe.com/gb/terms
https://www.instagram.com/about/legal/terms/api/
https://www.instagram.com/about/legal/terms/
http://nordicapis.com/instagram-api-and-the-transient-nature-of-public-social-apis/

A Human’s Guide to Drafting API Platform Policy 70

Setting Expectations

Once a clear map of responsibilities is created, the API platform
policy should then describe what the API consumer should expect
of the API provider. Setting expectations is synonymous with a
service-level agreement, but again the goal should be to define
it such a way as to make it straightforward for the API consumer
to digest. This is almost the most important part of the policy, as
the API consumer may need to pass these expectations onto their
customers: If an API provider defines the availability of their API
as being 99%, for example, this implicitly becomes part of the terms
and conditions between the API consumer and their customers.

It would be easy to create a huge compendium of the aspects that
API providers should take account of when setting expectations,
but a brief list would include:

• Availability of the API;
• Types of support available and their responsiveness (in high-

level terms, not email, ‘phone numbers, etc.);
• Access to developer portal, sandbox environments, refresh

of authorities and entitlements (API keys, OAuth client IDs,
etc.);

• Requirements for certification and on-boarding (screening,
compliance checks, certification of implementation, etc.);

• API functionality as referenced in documentation.

Now that we know what to expect of the API provider, the final
step is to define what is expected of the API consumer. This next
part describes what is acceptable and not acceptable behavior, and
communicates the actions the API provider might take should these
good behaviors not be observed.

A Human’s Guide to Drafting API Platform Policy 71

Describing Good Behaviors

With a clear picture of responsibilities and expectations, the API
provider should then define what their expectation of “good behav-
iors” are (which may be tied into a commercial agreement with
paid-for APIs). Good behaviors fall into two groups: application
behavior and consumer behavior. These groups tend to reflect the
interest of the application developer and legal team respectively.

Application Behavior

Application behavior refers to how a software program that con-
sumes the API is coded to ensure it does not breach what it is
responsible for or attempt to exceed expectations. The behavior
expected or forced on the application can be manifested in a
number of ways:

• Enforcement of rate limits to ensure “bursts” do not exceed a
given throughput in a defined period;

• Enforcement of quotas with an upper limit on the number of
API calls over a given period;

• Dropping long running HTTP connections or blocking new
connections where an upper limit has been breached.

API consumers need to ensure they design and implement their
applications to be cognizant of these good behaviors. Without doing
so, they run the risk of providing a poor user experience and
decreased functionality to the users of their application. Moreover,
if an application repeatedly breaches the good behavior policy then
access to the API could be rescinded completely.

A Human’s Guide to Drafting API Platform Policy 72

Consumer Behavior

While application behavior can be coded, ensuring good API con-
sumer behavior is a bit more tricky: It involves a human being
making a decision about how they are going to use an API that
may not concur with the terms of use defined by the API provider.
Consumer behavior generally (but not always) comes as a result
of a business decision and should not be made in isolation by a
software developer but in conjunction with the product’s legal and
commercial teams.

The majority of humans are generally subjective in their points of
view, so it helps if API providers are prescriptive in what an API
consumer can and can’t do with their API with a summarized list
in the manner of Stripe. API providers can take breaches of their
terms of use very seriously, as with the 9 month take down of
Politwoops by Twitter showed: It’s therefore important for both the
provider and the consumer to be 100% clear on both the definition
of consumer behavior and the consequences of not observing it.

Final Thoughts

Making an API policy interesting, relevant and to the point is a goal
that any API architect or product manager should take seriously.
Whilst the lawyers will always have their day in wrapping up your
policy in jargon, you should actively shape the output, ensuring the
key points are easy to digest, understand and act upon. If possible
reflect the following in your policy:

• Produce an accurate summary of the key points of the legal
documents, covering responsibilities, expectations and behav-
iors;

• Ensure the summary is in easily accessible language that
anyone can understand (for a great example see the Google
Developer Guidelines);

https://stripe.com/gb/prohibited-businesses
http://tktk.gawker.com/twitter-just-killed-politwoops-1708842376
http://tktk.gawker.com/twitter-just-killed-politwoops-1708842376
https://twitter.com/
https://developers.google.com/+/web/policies#guidelines
https://developers.google.com/+/web/policies#guidelines

A Human’s Guide to Drafting API Platform Policy 73

• Clearly explain the mitigations or consequences that will be
apparent should any terms of use be breached.

Taking this action can only make your API more accessible to
the developer community: As the API economy continues to grow
with increasing competition between different API providers, such
an approach can only, prima facie (as the lawyers would say
:smirk:) help develop competitive advantage for your API in the
marketplace.

Creating A Brand Guide
for Your API Program

What you let others do with your image is just as important as what
you let them do with your API.

Hosting a free-to-consume public API is a powerful tool for expand-
ing your functionality and branding into entirely new networks.
But many programs lack comprehensive and digestible guidelines
to protect their brand. Without a developer Branding Guide you
leave your company name, product name, logo, style, and message
open for reproduction in untasteful or even illegal ways.

For free APIs, data and functionality is given to third party de-
velopers to integrate into their apps in exchange for outsourced
R&D and increased marketing. Attribution is commonplace, and
at times desirable for third party applications as it helps establish
their credibility with end users. Therefore, most platforms establish
some sort of branding guideline for the API consumer to follow
based on their platform policies. This is unique from a press kit or
internal design style guide as it is developer focused — similar to a
partner or affiliate marketing guide — making it an important asset
to carefully prepare and maintain.

In this walkthrough, we’ll lay out typical brand guidelines that
providers offering a public API should use to ensure their company
logo, style, and message is reproduced in the best way possible on
third party channels. It’s ok to be specific throughout, as specificity
will help your developers in the long run.

Creating A Brand Guide for Your API Program 75

We’ll help decipher a bit of design jargon so that any provider,
small or large, can offer a branding guide and asset package that
controls how developers implement the API provider’s company
image within their apps.

Platform Strategy Dictates Brand
Requirements

First, keep in mind that your branding guidelines are part and
parcel of your greater platform policy and business model. The
monetization strategy you chose will likely impact the level of
attribution you require of your developers. If the API is free use,
high attribution will be necessary so that your marketing return
covers the opportunity cost — if the API is pay-to-play, the income
generated will hopefully outweigh the need to demand much
attribution.

Strict brand guidelines may be a huge turn off for some developers
looking to leverage your API. Imagine if every programmatically
triggered Twilio SMS was accompanied by “Sent by the Twilio API.”
That would be annoying, and would de-legitimize the developer’s
app, and confuse the end user.

Likewise, if your SDK forces an in-app user to leave the origi-
nal app to a different channel dominated by the API provider’s
branding, again, you’re doing things wrong. Especially if developer
consumers are intending on monetizing their app, they will not
likely sacrifice their image for your functionality. Thus, a happy
medium needs to be forged.

http://nordicapis.com/a-humans-guide-to-drafting-api-platform-policy/
http://nordicapis.com/api-insights/business-models/
http://nordicapis.com/how-to-grow-and-profit-using-a-freemium-api-monetization-model/
http://nordicapis.com/what-is-the-difference-between-an-api-and-an-sdk/

Creating A Brand Guide for Your API Program 76

Brand Guide Components

Now we’ll overview the main steps to create a brand guide that
helps free-to-use APIs control how branding — your message, name,
logo, color palette, placement, attribution, and more — appears on
third party apps

Message

Branding first starts with creating a story. The tone, perspective,
and voicing that make up your company’s copywriting should also
resonate throughout your API’s home page, developer center, and
descriptions of example API use cases.

An API brand guide should therefore define the platform function-
ality so that if developers describe the integration on their own
channels, they explain it correctly. It doesn’t hurt to also explain
the voicing or tone the provider company adopts to communicate
with its userbase.

Naming

Most closely guarded is a company’s registered name or trademark.
Third party apps shouldn’t reproduce the provider’s name or resem-
ble it too closely, therefore API Terms of Use typically protect brand

http://nordicapis.com/7-ingredients-that-make-up-a-superb-developer-center/
http://nordicapis.com/a-humans-guide-to-drafting-api-platform-policy/

Creating A Brand Guide for Your API Program 77

identity by listing example names or phrases that are not allowed.
Thus, your guide should:

• State your company name and proper capitalization —Example
API,

• Not allow portmanteaus that include some portion of the
provider’s name,

• List other acceptable/unacceptable naming conventions for
services your consumers may also reference.

In general, it’s a good idea for developer consumers to give their
service a unique name that is distanced from the provider’s. Above
all, third party apps shouldn’t confuse or mislead users regarding
your affiliation — the brands must stand alone.

Attribution

If the API provider’s brand must consistently accompany third
party app behaviors, be explicit in its implementation. Should
branding link to the API provider’s home page at all times? Re-
member when, where and what:

• Communicate when your brand should appear: Many APIs
require branding at all times the API is used to access the
provider’s data. A more relaxed method is to require your
logo at initial sign-in, and/or in the app’s About page. A third
party app may also chose to reference the API provider as
credibility. Even in that scenario, you can control how your
branding is presented.

• Communicate where your brand should appear: Perhaps the
API is called to query a database, populating a search field.
In that case your company logo should be located near the
search field. For other situations, delineate where on the user
interface your branding should appear — Top Left, Top Right,
Center, Bottom Left, Bottom Right, etc.

Creating A Brand Guide for Your API Program 78

• Communicate what exactly should appear: Clearly specify
what assets and attribution copy needs to be used and under
what circumstances — “Powered by Example API” badge,
“works with Example API”, etc.

Giving credit is different than implying an endorsement, so the
attribution shouldn’t suggest there is a partnership between the
third party developer and the API provider. So this is clear, the
provider shouldn’t be the most prominent element or logo on the
Web page, nor the only branding on the page. The best guides
lucidly communicate what level of attribution is required, and use
graphical aids whenever possible to help illustrate the point.

The Logo

A tech company’s logo will often come in varying iterations. Many
logos include an icon as well as a wordmark, and app icons are
often represented in isolation. Clearly delineate what your logo is
exactly —the icon, wordmark, the typography used, the relative
measurements, and color palette.

Creating A Brand Guide for Your API Program 79

For your logo, consider adding stipulations for your branding guide
like:

• Describe relative spacing between icon and wordmark
• Establish a minimum acceptable size — i.e. 80px or 25mm for

print.
• The third party logo should not resemble the provider’s style

in a similar way
• Ensure your logo always links to a specified provider page
• Icon can exist without wordmark, but the wordmark shouldn’t

exist without icon
• Don’t add a tagline or motto to the existing logo

If you have logo variations, note which is the best possible brand
representation. Logotypes are most accurate and should be used
whenever possible, but icons/glyphs are acceptable after brand has
been established or if there is limited horizontal space in the UI.

Make sure to note that it’s not acceptable to alter the logo in any
way. Embellishments like drop shadow, distortion, or clip masking,
as well as inserting the logo in front of busy backgrounds or
complex patterns should all be discouraged. So that the logo still

Creating A Brand Guide for Your API Program 80

remains visible with bright and dark backgrounds, have both a col-
ored, white, and grey/monochrome logo matching your platform’s
color scheme. It’s pretty easy to dream up of some hideous logo
misuses:

Exclusion Zone

The exclusion zone is the minimum padding, or white space
around the logo that ensures the logo is prominently displayed.
As pixel distances are relative, communicate this minimum safe
distance in relative terms — for example, make the exclusion zone
half the size of the icon diameter.

Creating A Brand Guide for Your API Program 81

This clear space is important to protecting the brand, as it makes
sure that third party company logos, phrases, or other graphical
elements aren’t displayed too close to your assets.

Color Palette & Typography

What are the colors used within your logo and throughout your
branding? Represent your default logo color for a light background,
and preferred color for a dark background, and list the specific
color hexadecimal as well as RGB, CMYK, and Pantone indicator
for each. Our hypothetical API, for example, has a nice evergreen
color. Similarly, note the font used on your logotype, headings, and
in body text for your general communications.

Creating A Brand Guide for Your API Program 82

Brands take time to choose the right colors that match their service
image. Unfortunately though, considering the varying browser
color settings and screen calibrations across thousands of different
devices, it’s hard to match colors exactly. Therefore, have fall
back color options for devices or screens with less optimized
color grading. As long as your identity is obvious and color not
significantly distorted, you should be fine.

Creating A Brand Guide for Your API Program 83

Formatting Your Design Guide

The presentation for the guidelines is JUST as important as their
meaning. Organize a brand guideline PDF, and have easily accessi-
ble digital logo assets.

Brand Guide PDF

Collate all the aforementioned points into a web page presence or
serve the guide in a PDF for download and immediate in-browser
viewing.

The Brand Assets

Lastly, package your assets in .ZIP file and ensure you have enough
color variants and transparent images that can be used against
various backgrounds. Remember, keep it lightweight (each image
file size should be no more than 1000 KB) and offer an array of file
formats (EPS, PNG, PDF) and color scales (RGB, CMYK, PMS).

The Effect of Zero or Poor Branding
Guidelines

Image is nearly everything in our web-infused age, as sleek profes-
sional design attracts the bulk of screen-watchers. Your program
should thus not only seek to incorporate healthy design practice,
but associate itself with apps that also embrace quality design.

If you are too lax in protecting your brand you face the prospect of a
fragmented and inconsistent development ecosystem. Integrations
appear murky, and user data and privacy will come into question.

Creating A Brand Guide for Your API Program 84

API Evangelist adds that the lack of a branding guide equates to
missed value for API programs:

“Even with this being a major concern, I see many
APIs implement very poor branding guidelines, giving
developers zero direction regarding how to properly
provide attribution. This is a missed opportunity to
not just protect the API providers brand, but actually
extend it and increase its value.” -Taken from Protecting
your brand with API branding guidelines

So, help nourish your developer ecosystem by supplying in-depth
guidelines so that developers share your mission.

Final Thoughts

Maintaining consistent platform-wide branding for a company is
hard enough as is. Extending that image to social channels can
be tricky, and retaining identity within a third party developer’s
application is even more difficult.

In this chapter, we’ve outlined a step-by-step process to create your
ownAPI branding guide, modeled after some of the best programs
in existence. As spreading platform brand awareness to as many
eyes as possible may be a primary objective for a public API, the
importance of defining these guidelines cannot be overestimated.

Use this cheat sheet as inspiration for your own program, but at the
end of the day, you control your branding, how it is represented and
where it is present in the developer’s app. Learn from the developer
relations missteps of Instagram and Twitter; if you plan on releasing
an API with branding restrictions, do so carefully and in a really
transparent way.

http://apievangelist.com/2013/01/29/protecting-your-brand-with-api-branding-guidelines/
http://apievangelist.com/2013/01/29/protecting-your-brand-with-api-branding-guidelines/
http://nordicapis.com/instagram-api-and-the-transient-nature-of-public-social-apis/
http://nordicapis.com/twitter-10-year-struggle-with-developer-relations/

Creating A Brand Guide for Your API Program 85

Examples of API Branding Guides in
the Wild:

Most companies with developer programs have unique brand guide-
lines as part of their API terms of service. Here are some to model:

• Spotify
• Zillow
• Dropbox
• Orange
• Slack
• TokBox
• Walkscore
• NYTimes

https://developer.spotify.com/design-resources/spotify-logo-color-guidelines.pdf
http://www.zillow.com/howto/api/BrandingRequirements.htm
https://www.dropbox.com/developers/reference/branding-guide
https://developer.orange.com/public/general/current/Orange_API_Guideline_2015_003.pdf
https://slack.com/brand-guidelines
https://tokbox.com/styleguide
https://www.walkscore.com/professional/branding-requirements.php
http://developer.nytimes.com/branding

Part Three:
Promotion

Launching an API with finesse

Much of API marketing involves a lot of inbound tactics. Nonthe-
less, there are ways to promote an API to widen it’s discoverability,
using SEO, press outlets, and other methods to widen your impact.
In this part, we’ll focus on best practices for launching an API, out-

87

lining directories your API needs to be submitted to, and important
channels to contact to spread the news of your release.

Perfecting Your API
Release

Build it and they will come is certainly not the case in the API
world. If you are managing an API program and seeing little to no
adoption, then perhaps you haven’t framed your service correctly.

Hopefully, the functionality is awesome, but perhaps your devel-
oper portal is lacking in usability or the API is not easily discover-
able. Launching an API without having it drop dead in the water
means having a strategy to get on the radars of relevant developer-
attended networks.

We must reiterate that focusing on technical details is simply not
enough. Treating an API as a product means giving it a marketing
arsenal the same as for any product launch. So what do successful
programs do? On top of having a working program, they planned,
they participated, and they got the word out. This chapter walks
through a general approach for releasing an API, many of which
points will be expanded in following chapters.

What do I release?

Are you looking for alpha or beta users to help give feedback? Will
you open source components in order to have a community partici-
pate in designing your API? Or will you have a more authoritarian
hold on your product and wait for a full release? In our world of

Perfecting Your API Release 89

continuous software iteration, it’s likely best to release in stages of
increasing magnitude before a v1. Public announcements are best
suited to grow in magnitude as the product is refined.

Time Your Release

What is the correct time to release? Schedule dates midweek to
hold major announcements - no weekends, not in the heat of
Summer, during known holidays or vacations, etc. If you want
a developer community to participate in an open source project,
timing may be different than releasing an API that accesses a
corporate dataset. Unless your tech is revolutionary or you have
an awesome demo, most credible tech news sites will only run
full release annoucnements, not features on closed betas still under
development.

Widen Your Potential Audience

People interested in the power of your API are not limited to
developers - give journalists the cues to describe aspects of your
program: functionality, access levels, protocols, parameters, and use
cases. This means having a succint one-sentence pitch, like “An API
that turns any black and white photograph into stunning full color
high resolution images”

Have the Right Monetization plan

As a startup, selling to other startups can be a bit awkward. Don’t
scare potential users away with high subscription fees. The best
APIs demonstrate an astounding product, and help their developers
grow their products before asking for money. Especially within

Perfecting Your API Release 90

freemium subscription models, monetizing an API and reaching a
return on investment can be a long process, as you must wait for
a second development cycle before your client’s app can afford to
graduate to a higher tier.

Have a Demo

Realizing your business acumen off the bat can improve how you
market your API. Giving visitors a taste of functionality through
sample calls or API playground is absolutely neessary if you expect
your product to compete for their time.

Have Awesome Branding

This really goes without saying. But having a beautifully designed
front end with unique branding can seperate the winners from
losers.

Ready to Promote? Read On

Preparing a product launch takes months and months of preper-
ation. Other good practices are blogging, giving active developer
support, and attending or hosting conferences. Next up, we’ll dis-
cuss how to position an API service online for maximum discovery
potential - to do this, we’ll divulge two helpful resources; a Cheat
Sheet of 10+ API Directories, and a list of Important Press
Networks in the API Space, along with some other helpful advice.
Let’s get started!

Tips to Make Your API
More Discoverable

Even if you have a functionally brilliant service, without the right
positioning your conversion rates could still be very low. Assuming
you’ve made your developer program visible to the public, how
should you then promote your API without having it drop dead
in the water?

There still may be tremendous growth potential in your service if it
has the right online representation. Perhaps you didn’t orchestrate
your initial release launch with enough gusto, or the service isn’t po-
sitioned in a way that increases its visibility across search engines,
API directories, and community forums in a way that highlights a
unique value proposition.

Getting the word out by attending and speaking at events, or by
holding your own hackathon can make for excellent publicity. A
lot of this naturally depends on word of mouth and the human-
human element — nonetheless, there is still a lot you can do online
to increase the exposure and breadth of your API program to ensure
all possible avenues for growth are utilized.

In this chapter, we dig into three inbound methods that a provider
can use to improve the discoverability of their API:

• SEO: Optimize your API homepages to make them more
searchable.

• API Directories: Promote your API by submitting to our
cheat sheet of 10+ directories.

Tips to Make Your API More Discoverable 92

• ServiceDiscoveryAutomation: Increase discoverability with
machine readable techniques.

SEO Approach: Optimization of API
Homepages

The most obvious method a developer is going to use to find your
API is through a Google search. SEO or Search Engine Optimization
is therefore a top priority for any startup. Make your page more
searchable by optimizing content and metadata so that big name
search engines continually spotlight your site. As the API Economy
is highly niched, keyword optimization is a close friend to many.

Keyword Frequency

Consider what a developer would search for when looking for a
certain tech in your space. As an example use case, let’s say you
are entering the Natural Language Processing market with an API
that accepts bodies of plain text and provides statistics such as
word count, word frequency, tone analysis, and performs other
NLP functions. A focus keyword phrase that a potential developer
consumer may search for would be Text Analysis API.

The number and frequency of keywords found in the copy for
the top five results from a Google search for “Text Analysis” is as
follows:

Company “text” “analysis” “API”
Aylien 19 (6%) 11 (3%) 13 (4%)
AlchemyAPI 2 (1%) 2 (1%) 3 (1%)
Text Razor 2 (1%) 2 (1%) 3 (1%)
Bitext 6 (2%) 6 (2%) 20 (6%)
Saplo 11 (3%) 7 (2%) 18 (5%)

http://nordicapis.com/new-breeds-of-businesses-that-have-emerged-out-of-the-api-economy/
http://nordicapis.com/new-breeds-of-businesses-that-have-emerged-out-of-the-api-economy/

Tips to Make Your API More Discoverable 93

Results from search performed on 5-4-2016. WordCounter.net used
to calculate Keyword density.

Google’s algorithms for ranking content are in constant fluctuation,
but as you can see above, sometimes page ranking comes down
to something as simple as keyword frequency. Alyien’s presence
stands out from the rest with this search as it scores high keyword
density for all three search terms.

Allowing your API to soar naturally upwards in search rankings by
focusing on a focus phrase, supported by a diversified portfolio
of supplementary focus keywords in your site copy will be a
powerful tool in your marketing arsenal. This means that having
a carefully worded non-technical description of API functionality
is paramount to search engine optimization.

Having good SEO and API meta data also makes you more dis-
coverable by API-specific search engines, such as the APIfinder
on APIhound.com, or engines that use the APIs.json format for
discovery (more on that below).

Separate Pages that Overview Each API

Let’s take a deeper look into why Aylien performs so well in this
test search. The site copy isn’t the only thing performing well, the
URL http://aylien.com/text-api specifically contains two of our
keywords — “text” and “analysis.” Though Aylien supplies different
services (two APIs, apps, and publisher tools), they have separate
home pages for their two API services — Text Analysis API &
News API. Separating service presences with dedicated developer
centers that use simple, targeted URLs is a boost to SEO. This is
necessary for API suites that cater to many specific services, such as
Microsoft’s Cognitive Services — a library of artificial intelligence
APIs. The BarChart on-demand financial market data platform
takes this even a step further, isolating the public documentation
of each API parameter onto unique URLs.

https://wordcounter.net/
http://apihound.com/apifinder
https://newsapi.aylien.com/
https://www.microsoft.com/cognitive-services
http://www.barchartondemand.com/api.php
http://www.barchartondemand.com/api/getEquitiesByExchange/

Tips to Make Your API More Discoverable 94

Separate homes pages for your multiple APIs helps organize site
architecture, and widens your content impact to take advantage of
specific focus keywords, opening you to a wider net of searches.
Home pages per service also allow a space to introduce technol-
ogy to non-developers — a good example is the Pitney Bowes
Developer Hub — for each individual API they have a page with
detailed copy, and an accessible video that communicates the value
proposition for the specific function.

Don’t push the segmentation of actual documentation too far
though, or you risk a decrease in usability and developer experi-
ence.

It’s in the Name

This may seems obvious, but choosing the correct product name is
crucial. An API-centric company promoting a single product has
the benefit of tying niche functionality into a single brand image —
Wit.ai, for example, uses the Artificial Intelligence acronym (AI)
within their name and domain extension. However, larger tech
companies must partition multiple brand identities under one roof,
thus increasing the importance of targeted product naming and
service identity.

Service Discovery Automation

API discovery is the sum total of processes a developer uses
to search for, find, and research APIs. As described above, this
typically starts with a Google search, or via the aforementioned
directories. But more than often, successful programs get traction
through a bit of luck and word of mouth.

After a developer has found a few potential services, there are
still many factors that make comparing similar APIs a complex

https://developer2.pitneybowes.com/en/geolife.php
https://developer2.pitneybowes.com/en/geolife.php
http://nordicapis.com/8-keys-to-creating-a-truly-usable-api/

Tips to Make Your API More Discoverable 95

affair. Potential users must consider things like licensing costs, rate
limiting, data formats, usage policies, authorization methods, and
documentation types, and then must experiment with actual code
implementation and testing before deciding on a single service to
use.

Bruno Pedro, API specialist and co-founder of Hitch hq, sees the
entire process of API discovery as thus:

1. Initial Searching: Google, directories.
2. Documentation: Understanding API parameters.
3. User Provisioning: Must authorize/authenticate with the ser-

vice by some means. SAML, OAuth, etc.
4. Code Generation: Consumer will want to work with the

language of their choice, so SDKs, ready-to-use libraries are
generated from API definition.

5. Integration: Once API is consumed in app, it must be moni-
tored for uptime and changes.

At the very end of all this searching and testing, there’s no guaran-
tee they’ll even find the right match. So, the question is, how can we
automate certain parts of this discovery process to make finding the
right service more easy?As we’ve outlined before, solutions exist
to automate Code Generation, and there are many API monitoring
solutions on the market as well.

But the other points are not as easily automated.

The hope is that by creating machine readable and consumable
meta format for describing APIs, machines can easily understand
what an API is capable of doing, and can describe the human-facing
documentation, the price, signup process, authorization mecha-
nism, endpoints, and more. That’s where APIs.json comes in — a
project that hopes to combine these items into a single format to
make all APIs more discoverable.

http://www.slideshare.net/bpedro/how-to-automate-api-discovery
https://www.hitchhq.com/
http://nordicapis.com/api-security-oauth-openid-connect-depth/
http://nordicapis.com/what-languages-should-your-api-helper-libraries-support/
http://nordicapis.com/description-agnostic-api-development-with-api-transformer/
http://nordicapis.com/monitor-the-status-of-apis-with-these-4-tools/
http://nordicapis.com/monitor-the-status-of-apis-with-these-4-tools/

Tips to Make Your API More Discoverable 96

APIs.json

The open APIs.json format, supported by 3scale and API Evangelist,
is an emerging format for describing API operations to increase the
chance of automated discoverabiltiy by software robots. The idea
is novel because it is the first approach to standardizing an API’s
operational metadata.

“For each API listed, you give it a name, description,
and supporting properties, which may be as simple
as providing a link to your documentation, or be as
complex as providing a link to a machine readable API
definition in the Swagger or API Blueprint format.”

Dubbed as an index for API operations, APIs.json can be thought
of as similar to how websites use a sitemap.xml file to describe site
architecture.

Your APIs.json file should reside in the root of your domain. Tkae
Fitbit’s current implementation on https://www.fitbit.com/apis.json

as an example. (Also view a detailed explanation of said Fitbit
APIs.json file here). Once the APIs.json file is created, you can
register it with APIs.io, an open source API search engine which
currently lists over 1000 APIs.

Outside of APIs.io, APIs.json will be a driving force behind other
API-specific search engines and other projects. Consumers can
also create API.json files to describe the 3rd party APIs that their
applications depend on. This ecosystem will even enable API
brokers to act as aggregators that assemble collections of multiple
APIs relevant to specific industries.

The project is still accepting feedback, but as more people use it,
future standardization with a body like W3C seems possible. Many
believe that API indexing - also check out APIs.guru -will act as a
huge leap toward standardization in the API space — so better to
jump in on the fun now rather than later.

http://apisjson.org/
http://apisjson.org/2016/03/01/apisjson-is-an-index-for-api-operations
http://apievangelist.com/2015/01/31/breaking-down-the-fitbit-apisjson-file/
apis.io
https://github.com/apis-json/api-json/issues
APIs.guru

Cheat Sheet of 10+ API
Directories to Submit

Your API to

Ok. Now we have a good take on refining brand identity and copy.
Next is making sure that your API is represented in the following
directories so that developers using resources other than Google
are able to find them. We don’t have any numbers on site traffic for
these sites, but as submitting profiles is a relatively easy process, it
seems worth it to increase the online visibility of your API.

ProgrammableWeb

ProgrammableWeb is the best site to follow for new API releases
and to search for APIs. If you want to target developers who are
looking for a tech like yours, this is a great first stop. What makes
ProgrammableWeb great is that they are pretty open to featuring
content from the community. There are a few things you can do on
their site:

• SUBMIT a profile for your API to add it to the directory.
• SUBMIT a profile for your SDK. This also includes helper

libraries, and/or code samples.
• If you have an announcement or Press Release, CONTACT

the PW.com Editors.
• They also publish sponsored content as well as place ads.

http://www.programmableweb.com/news/how-to-contribute-articles-apis-and-other-content-to-programmableweb/analysis/2016/04/18
http://www.programmableweb.com/news/how-to-contribute-articles-apis-and-other-content-to-programmableweb/analysis/2016/04/18
http://www.programmableweb.com/add/api/
https://www.programmableweb.com/add/sdk
http://www.programmableweb.com/contact-us
http://www.programmableweb.com/contact-us

Cheat Sheet of 10+ API Directories to Submit Your API to 98

Mashape

Mashape is well known for their developer portal and analytics
services for APIs and microservices. Even if you’re not using their
management tools, you can still list your API on PublicAPIs.com,
their extensive marketplace:

• ADD your API profile to PublicAPIs.com
• or PUBLISH your API with the Mashape network

APIs.guru

APIs.guru is becoming the open source Wikipedia for APIs. Since
the directory is open sourced, APIs.guru has integrated with Any-
API, SDKs.io, Cenit.io, and other open source software, meaning
this could potentially expose you to a wide net of software devel-
opers. Anyone can add or change an API:

• CONTRIBUTE to this project on GitHub

Other Places Where you can List your API:

• Exicon : ADD your API to their directory in a “matter of
minutes.”

• IBM API Harmony: SUBMIT your API for review with
IBM’s curated third party collection.

• Swedish API Directory by Mashup.se: SUBMIT your API
to the Swedish API catalogue maintained by Andreas Krohn/
Dopter.se

• API For That: SUBMIT a profile to this small, but curated
API directory.

• SDKs.io: Add your SDK to this collection of Software Devel-
opment Kits.

https://www.mashape.com/
https://www.publicapis.com/
https://www.publicapis.com/add
https://market.mashape.com/api/new
apis.guru
https://any-api.com/
https://any-api.com/
https://sdks.io/
https://cenit.io/
https://github.com/APIs-guru/api-models#existing-integrations
https://github.com/APIs-guru/api-models#existing-integrations
https://app.exiconglobal.com/api-dir/
http://apiharmony-open.mybluemix.net/welcome/submit
http://apikatalogen.se/apiform/
http://www.apiforthat.com/
https://sdks.io/Account/Login?ReturnUrl=/SDK/New

Cheat Sheet of 10+ API Directories to Submit Your API to 99

• APIs.io: Create an APIs.json file and register your API with
APIs.io. (We’ll explain why below)

• API Changelog: Request an API with this API monitoring
site so that your API consumers have automated updates
when your docs change.

• Hitch hq: A service API providers can use to grow their
community and make their platform more discoverable. They
have a growing list of APIs, and providers can sign up with
them to add their API to the list.

• More?: Please contact us to expand this list!

Now, the next two aren’t exactly API directories, but smart to
consider as part of a promotion strategy for web apps that have
APIs.

IFTTT

If This Then That (IFTTT) is a platform where users can set triggers
between web apps â€” if one thing happens in one app it will
influence a function on another app. The cool thing is that IFTTT
does accept requests to build a new channel on their platform if
your app has a public API. If you want to get your functionality
and branding in front non-developers, this could be a good outlet:

• SUBMIT a channel request with IFTTT.

Zapier

Zapier is similarly a platform where users can create home brewed
concoctions to automate the sharing of data between various web
apps. If you want to submit your app into the Zapier marketplace,
it’s actually possible.

http://apisjson.org/format.html
http://apis.io/
https://www.apichangelog.com/request
https://www.hitchhq.com/apis
https://www.hitchhq.com/#subscribe
mailto:bill@nordicapis.com
https://t.co/0S93m3PMiA

Cheat Sheet of 10+ API Directories to Submit Your API to 100

• Add your app to Zapier if it has a REST or XML-RPC based
API.

We’ve previously noted that there are around 11 ways to find
APIs from the developer’s perspective. Note that however, not
all those API directories allow you to submit profiles â€” some
are search consoles for API management networks like Apigee
or Mashery. Others are proprietary API collections (IBM library,
Google Discovery Service, etc.). Thus, in this chapter we have listed
networks that any API provider could submit to.

https://zapier.com/help/getting-new-service-zapier/
http://nordicapis.com/api-discovery-11-ways-to-find-apis/
http://nordicapis.com/api-discovery-11-ways-to-find-apis/
http://developer.mashery.com/apis

Important Press
Networks and Developer

Channels in the API
Space

Where do developers talk? If you need to get your API in front of
the right people, where do you send it? In this chapter we discuss
alternate means to get the word out to developer communities. It
doesn’t hurt to do things the old fashinoed way - making a press
release, and contacting relevant news parties. But more involved
actions often produce the best results; offering an interview with
the founder or CEO, publishing helpful original content, or reshar-
ing content you feel helpful to your audience can all be interesting
methods for increasing the breadth and existence of your program.
Not meant to be exhaustive whatsoever, below we mention some
outlets to get you started with API promotion.

Press Release Distribution

If you have the budget, ramp up press distribution by submitting to
MyNewsDesk. The service was created by journalists who where
tired of getting a lot of irrelevant press releases sent to them.
Via my news desk journalists can sign up and subscribe to news
that’s relevant to them and you, like APIs, developer economy, and
startups.

http://get.mynewsdesk.com/

Important Press Networks and Developer Channels in the API Space 102

API-Specific Blogs, Thought Leaders,
and Digests

• ProgrammableWeb: The largest database of APIs and news
source for API releases. The ideal resource to contact with
your API announcement.

• API Evangelist: Kin Lane, supported by 3Scale. Kin has branded
himself as the API Evangelist, a figurehead for the API com-
munity. He writes a lot, reviews APIs, and initiates discussion
on a wide range of topics.

• API Handyman: Quirky, technical, helpful. Arnaud Lauret
writes on API design on his blog and sometimes for Nordic
APIs too.

• PUSH POST PULL: Weekly newsletter all about APIs that in-
terviews emerging startups, maintainted by Gordon Wintrob
of Linkedin.

• API Developer Weekly: Curated weekly content published by
various players in the API world. Managed by James Higgin-
botham of LaunchAny and Keith Casey of Casey Software.

• API2Cart: They publish digests that sum up weekly API news.
• Restlet: They similarly publish thought pieces and digests in

the space.

General Tech & Developer News

The following blogs often cover the intersection of business and
technology and the developer economy. Depending on the scale of
your business, some may be:

• TechCrunch
• TheNextWeb
• InfoQ

Important Press Networks and Developer Channels in the API Space 103

• Vision Mobile
• Gigaom
• Gizmodo
• Computerworld
• GeekWire
• Wired
• VentureBeat
• ZDnet
• Cnet

Nordic Tech Press/News

• A Swedish-based competitor to MyNewsDesk is Cision, which
similarly enables you to reach relevant journalists and influ-
encers to spread news.

• ComputerSweden is a leading source for tech and business
news

• Arctic Startup
• Swedish Startup Space
• Nordic Startup Bits

Social Bookmarking

• Product Hunt
• Reddit

API Events

Curated by Matthew Reinbold of VoxPop.co, webapi.events cata-
logs all upcoming API events, meetups, or conferences around the

http://www.cision.se/
http://computersweden.idg.se/
http://webapi.events/

Important Press Networks and Developer Channels in the API Space 104

western world; a helpful tool for practitioners looking to participate
more in their local communities.

The Everpresent Commentator

Who knows, traffic could arise from of a single link posted in a Q&A
forum like StackOverflow. It’s not always in good taste to market
your API in blog comments or forums where developers are going
to seek unbiased help. Rather, using your niche knowledge to offer
advice and resolve issues is a more helpful approach. When you do
feel the urge to blatantly self promote, a disclaimer never hurts.

Utilizing Product Hunt to
Launch Your API

As more startups are formed, the web continues to break down into
smaller independent services, increasing the amount of awesome
SaaS tools available but also changing the way they are promoted.
No longer are new ideas granted 15 minutes of fame — it’s 5 seconds
at best. Enter Product Hunt, the Internet’s leaderboard for cool
products and tech. Product Hunt is a community driven site that
is becoming more and more important for discussion around new
apps, devices, and APIs.

A Y-Combinator graduate, Product Hunt
(PH) is an upvote list-structured platform
that relies on the addictive nature of learn-
ing about new technologies. Users can upload or claim product
pages, categorize them by category, create product collections, and
follow other users. What Product Hunt offers is a viral potential
to have hundreds or thousands of users test a burgeoning API in
the matter of a day. But as profiles remain visible on the site, it
can also add a nice steady boost to traffic for months, or even
years following. This scale of exposure could very well be positive
to establish name recognition, refine products, and acquire new
developer consumers.

If you haven’t profiled your API on the site yet someone else could
always could, meaning there’s always the potential for a front
page feature and unanticipated attention spike. However, truly
successful Product Hunt campaigns are given forethought, utilizing
referral links, a carefully maintained sign up list, and a vigilant eye
to respond to user comments and fix bugs that may arise in the

https://www.producthunt.com/

Utilizing Product Hunt to Launch Your API 106

process.

There are evidently best practices for owning your Product Hunt
presence and utilizing the community as a means to announce
a release. Thus, in this chatper we review some success (and
horror) stories from past releases on Product Hunt. We’ll interview
folks from Sheetsu, Batch.com, and Flutterwave about their API
launches, and also tune into past campaigns from API Plug, API
Castor, Deepgram, and others. We’ll use these collective experi-
ences to arrive at ideas on how to correctly prepare for your own
future release. Though we’ll focus on the unique qualities of API
evangelism, the same general roadmap can be followed by other
types of startups creating a Product Hunt campaign.

Alpha, Closed Beta, Open Beta, or
Full Release?

VentureBeat idenfities Product Hunt as a “Lanuchpad for startups
and VC deals.” The projects here are new, but are well executed.

Knowing this, when is best to launch a campaign? When do
you announce a release? There are benefits for structuring your
campaign as a closed beta, giving Product Hunters a rare look inside
your platform. But for the most part, it’s safer to announce while
in open beta or full release. As Michael Oblak, creator of Sheetsu,
told Nordic APIs:

“Always allow users to check your full product. So never
closed Beta or Alpha. Allow all users to sign in, take
a look, check your landing page, use your product …
Product Hunters really like to check the product, play
with it.”

http://venturebeat.com/2014/07/17/product-hunts-rise-from-email-experiment-to-launchpad-for-startups-vc-deals/
https://twitter.com/michaloblak
https://sheetsu.com/

Utilizing Product Hunt to Launch Your API 107

It’s better to scale software product development holistically, with simple
functional releases paired with overall user experience

Product Hunters have high standards for functionality, usability,
and appearance. Therefore, submitting a pre-launch alpha is dis-
couraged. Antoine Guénard of Batch.com echoes this sentiment,
acknowledging that though a closed beta could include exclusive
deals for Product Hunters, you will miss organice traffic following
your anouncement; “Open beta or full release are the safest then,
your product is mature enough to keep the users and benefit of
huge organic effects.”

Preparing for a Release

Now that we know what to release, how do we do so using PH?
As your PH release will direct visitors to your developer center,
keeping updated documentation, tutorials, and other developer
resources is critical.

Michael Oblak shared some insights on preparing your product
that he picked up on his success demoing Sheetsu:

• Check for bugs, be sure that everything functions appro-
priately. “Be sure that everything is working like a charm.
You can’t afford 404 pages or your server returning 500 errors.
Everything needs to work. Treat PH submission as a ‘big
opening day’”

• Simplify the use of your product: “The second very im-
portant thing is the simplicity of using your product. If you
are providing an API, you need to provide docs, which are
easily accessible, with examples of usage, which are also very
clear for the reader. Have in mind, that many of the people

https://twitter.com/guenard
http://nordicapis.com/7-ingredients-that-make-up-a-superb-developer-center/

Utilizing Product Hunt to Launch Your API 108

visiting your website might not have an idea how to use the
API you are providing. It’s always a good idea to prepare an
easy tutorial for them, with screens if needed, to help them
configure and use your API.”

• Prepare easy signup process and retain emails: Prepare for
the surge of interest by creating an easy way to collect emails.
The most clean way to do this is without those pesky email
confirmations.

• Have a ready-to-use demo: “PH submission is a chance for
you to demo your product to many people. Make your demo
short, easy and preferably with your user’s data, so it’s more
appealing to them. With that, they can see value instantly.”

In the case of Sheetsu, the Product Hunt profile brings visitors to a
demo where there is a quick login using Google. All visitors have
to do is paste a link to the Google Spreadsheet, click a button, and
the tool generates a ready to consume API using data pulled from
their spreadsheet. Under the hood APIs are complex, so mask this
with an easy-to-consume demo that impresses.

• Present examples and use cases: Demonstrate the example
use cases for your product. These could range from apps
already in use, to potential uses or end user experiences.

• Increase server capacity: Though Product Hunt itself won’t
“hug you to death”, it could lead to it. In preparation, make
sure that your servers will handle the traffic. Oblak advises to
prepare to handle at least 1k concurrent sessions. This amount
is petty for larger organizations, but a startup with limited
space may need to increase capacity or put a limit on traffic.
API Castor’s unexpcted Product Hunt experience found that
implementing a wait list feature would have been helpful for
his product:

“Mental note 1: Consider limiting signups to a set #
and having a waitlist feature in place prior to launch to

https://en.wikipedia.org/wiki/Slashdot_effect
https://medium.com/@APIcastor/notes-from-a-launch-6e24a00c48ac#.adqp0cdzp

Utilizing Product Hunt to Launch Your API 109

ensure traffic is predictable and potential signups aren’t
lost.”

• Enter the community as soon as possible: Aside from the
product side, it’s good to start establishing yourself within
the community early on. This obviously means creating an
account, playing around and commenting on the site, and
perhaps seeing if a friend has an invite code [explained later].

• Reach out to the makers: People like Bram Kanstein have
great insights on the PH process. Kanstein is the creator of
Startup Stash, the most-upvoted product so far. For example,
as the Board of Innovation began to prepare for their hunt,
he offered invaluable advice on optimizing their landing page
and PH post.

• Reach out to moderators for help: They seem like a friendly
bunch. Here’s their About page. This is essential if you intend
to make your hunt an exclusive…

Offering Exclusive Deals: The Gold
Star

Another thing to consider in the preparation stage — some de-
veloper programs go full out with a dedicated landing page to
welcome Product Hunt visitors, offering discount codes and sweet
deals. This could include a cost savings, free use for a certain period,
free server space, or other creative gifts. Being a PH exclusive hunt
also comes with a gold star, and a bit more attention and love from
the community.

You can can sign up your exclusive with the PH team here, and
the PH FAQ also explains what qualifies as an exclusive program —
bascially offering a meaningful discount and to clearly introduc-
ing the deal. Algolia, for example, offers 2 months free to Product
Hunt visitors:

https://twitter.com/bramk
https://medium.com/@bramk/how-i-launched-the-2-most-upvoted-product-of-all-time-on-product-hunt-f3772fb20ad8#.50xia9s5u
http://www.boardofinnovation.com/2015/07/29/posting-on-product-hunt-beated-our-expectations/
https://www.producthunt.com/about
https://rrhoover.typeform.com/to/ysDOD2
https://www.producthunt.com/faq
https://www.algolia.com/cc/producthunt

Utilizing Product Hunt to Launch Your API 110

Most landing pages welcome the visitor with a cat wearing Google Glass

Or, API Plug’s Product Hunt referral page offers a 20% discount and
$25 Credit from Digital Ocean Digital Ocean:

See what we mean about cats? It’s sort of an expected thing.

In Batch’s case, the team opted for the Exclusive access using a
dedicated landing page, which gave the community early access
for 24 hours. This preparation took a bit of planning for the team;
and required “managing individual sub-access accounts, handling
redirects, and ad-hoc design integrations)”, but they found that it
helped grant more control on launch day, and enabled them to work
more closely with the Product Hunt team to schedule their launch.

Actually Submitting a Profile on
Product Hunt

Definitely read through the Product Hunt FAQ. Part of the allure
of Product Hunt is that it is still partially an invite-only network —
anyone can register and upvote, but only members can comment
and post new products. To get around this, you’ll have to be
nominated by a member in order to submit. With a little finagling,
you should be able to find a connection to the platform. If not,
moderators will usually help credible makers enter their realm.

Once you have permissions and are ready to submit, the “+” button
in the top right will create a profile submit page, with only a few
categories to fill out including:

https://apiplug.com/?ref=producthunt
http://web.archive.org/web/20151018204426/https://batch.com/blog/start-up-launch-power-product-hunt-hacker-news-techcrunch/
https://www.producthunt.com/faq
https://www.producthunt.com/faq#how-do-invites-work-and-how-do-i-get-an-invitation
https://www.producthunt.com/posts/new

Utilizing Product Hunt to Launch Your API 111

• Category - e.g. Tech, Games, Podcasts, Books
• Name
• URL - Direct link to the product page (avoid links to press or

blogs)
• Tagline - Very short description of the product (make it

catchy!)
• Images

As you’re trying to create the best first impression possible, succinct
eye-grabbing copy triumphs. As PH describes:

“Taglines matter. The best taglines are succinct, describe
the product, and avoid cliche descriptions like “email
on steroids” or superfluous buzzwords like “a beautiful
SoLoMo livestreaming experience.”

Lastly, to maximize the amount of upvotes, timing is huge. Kanstein
recommends that 10.30AM CET is the best time to post to PH, while
Oblak recommends aiming for the Europe lunch time and USA
morning.

https://medium.com/@bramk/how-i-launched-the-2-most-upvoted-product-of-all-time-on-product-hunt-f3772fb20ad8#.50xia9s5u

Utilizing Product Hunt to Launch Your API 112

The Launch: Introduce Yourself, Play
Nice, Get the Word Out

So, you’ve hit submit. Now what? Well, don’t expect to sit back
— posting is only the beginning. It’s a great idea to kick off
conversation with a comment that introduces yourself, and details
the functionality of your API, and what you hope to achieve.

“Pro tip: those that answer questions and actively en-
gage in the discussion (examples here, here, and here)
tend to get more attention and appreciation from the
community.” - Product Hunt FAQ

Lastly, don’t rely on random upvotes or soliciting likes, but try
to increase traffic using natural means, like sending a newsletter,
sharing your PH profile across your social networks, and contact-
ing podcasters like who may be interested in featuring you.

Startup Stash creator Kanstein initiates conversation. As he said in his blog, “I
decided this would be my main focus while launching”

For many, the gauge of success for a PH launch is becoming
featured. Though PH won’t disclose the exact algorithm that
powers their ranking system, it is a combination of upvotes, time,
and traffic that decides what appears on the home page. Even
after all this prep, traction will largely hinge on word of mouth,
ultimately decided by the awesomeness of your API demo. If you
mimic other services or don’t have a niche unique value position
(if you are one of the hundreds of SMS APIs, for example), or if
your presence is too technical for the non-developer to understand
your API parameters, then you likely won’t be successful on this
platform.

https://www.producthunt.com/posts/inside-2-0
https://www.producthunt.com/posts/sunrise-for-mac
https://www.producthunt.com/posts/shadow

Utilizing Product Hunt to Launch Your API 113

The Unanticipated Launch

Ready? Maybe you’re not. In late October 2015 API Castor Nicholas
Hilem, founder of API Castor, awoke to a slew of notifications
related to his startup. Oh god, he thought. Someone had added me
to Product Hunt. He was only half prepared. Cancelling all plans he
had, he tried to fix as many bugs as possible before traffic exploded.

“Apparently, one of the PH mods had seen our HN
[Hacker News] posting and submitted us. A sense of
dread washed over me as I anticipated the flood of
traffic that might follow. I quickly made a short list
of easy polish items that I could still tackle that night.
Cracked out 80% of them, accepted our fate, and called
it a night.”

The attention spike from a Product Hunt launch

Since any member can post to the site, this sort of potential
is always there. Horror stories aside, the moderators are pretty
understanding, and have allowed teams to submit again in the past
to get the traction they deserved. If this happens when you’re not
already a member, tweet at @ProductHunt and they’ll likely give
you access.

Use this badge to prevent the unanticipated hunt

https://medium.com/@APIcastor/notes-from-a-launch-6e24a00c48ac#.dfk5oa9db
https://twitter.com/intent/tweet?question=.@ProductHunt,%20%5Binsert%20your%20product%20name%5D%20is%20on%20Product%20Hunt%20today.%20Can%20I%20have%20commenting%20access%20please?%20%5Bplease%20link%20to%20your%20product%20on%20PH%5D

Utilizing Product Hunt to Launch Your API 114

The Return on Investment

So is it all worth it? From what we’ve heard from others, the whole
experience can be really helpful in getting leads and retaining users,
allowing others to validate early stage products.

“Product Hunt produced a solid amount of traffic (4696
visits in 24 hours) with a decent sign-up rate (6.63%).
More importantly, PH set themselves apart in their
ability to continue to drive traffic to our site over the
week, amounting to an additional 150% of what we had
on launch day, resulting in a grand total of 13,866 visits.
They have a tech-loving audience with a product/design
angle, who posed very interesting questions from the
community.” - Batch.com

Though Product Hunters have a smaller average registration, PH had higher
initial and recurring traffic. Taken from Batch.com blog (now archived).

For Sheetsu, Oblak is still “noticing visitors from PH today (10
months after submission). Many of my first customers and users
were from the PH. Most of them are still using Sheetsu now.”

The Internet’s Watercooler is
Product Hunt

You may be astounded, how were we able to write an entire blog
post about Product Hunt with only two cat pictures? Though PH
certainly acts as an anchor for meme culture, founder Ryan Hoover
and the PH team has created a seriously useful platform, which has

Utilizing Product Hunt to Launch Your API 115

become a staple addition to the startup marketing arsenal. What
makes PH alluring is not a multi-million person userbase, it is
that the community is made out of influencers; product creators,
managers, and entrepreneurs.

Just because it’s free to submit here doesn’t mean you shouldn’t de-
vote attention into preparing your launch using these tips. Granted,
the platform is still in flux, so these processes may change in due
time, but hopefully the best practices we’ve learned from past
campaigns will aid the tenacious and earnest API advocate.

It’s also important to note that many strategies listed here are basic
developer experience knowledge, and can help prepare for listing
your API on other sites. PH and Reddit can be helpful, but adding
your stack to Stackshare.io, or posting your API to Hackernews
are even more relevant to APIs as they appeal to a more technical
crowd.

After you’ve had a successful campaign, it’s tradition to write about
what you learned, share statistics, and help others succeed. Good
luck hunting, and please leave feedback on how to improve this
guide!

Resources

From the Product Hunt team:

• Product Hunt Pro Tips
• Product Hunt FAQ
• APIs with exclusive offers to the PH community can sign up

with the PH team here
• Here is the entire PH team and their Twitter handles

PH Campaigns mentioned:

• Sheetsu | Michael Oblak, Founder

https://www.producthunt.com/protips
https://www.producthunt.com/faq
https://rrhoover.typeform.com/to/ysDOD2
https://www.producthunt.com/about
https://www.producthunt.com/tech/sheetsu
https://twitter.com/michaloblak

Utilizing Product Hunt to Launch Your API 116

• Batch Insights API | Antoine Guénard
• Startup Stash
• API Castor
• Flutterwave

https://www.producthunt.com/tech/batch-insights-api
https://twitter.com/guenard
https://www.producthunt.com/tech/startup-stash
https://www.producthunt.com/tech/api-castor

Part Four: Advocacy

Building a community around an API

Creating a discoverable API with developer center materials is only
the beginning. The number of developer evangelists promoting
API programs have skyrocketed in recent years, and for a good
reason. Having community leaders that represent developer needs
is essential. In this section we discuss how to advocate your
API using evangelist best practices, developer outreach, feedback

118

and surveys, holding conferences, and creating stunning technical
demos. The API programs that succeed in doing so will naturally
form a community that can scale itself simply through word of
mouth.

Day in the Life of an API
Developer Evangelist

Evangelist, advocate, community builder, whatever you want to
call it, since Guy Kawasaki of Apple popularized the concept of
“technology evangelism,” the role has become a staple addition for
software outreach. New startups and corporations alike now often
hire evangelists — a rather nebulous breed of employee between
sales, marketing, engineering, and support. Evangelists tread many
different camps, know their product in and out, receive feedback
from the community, and work to better the product and consumer
experience as a whole.

Nowhere is the title more relevant than in the API space, where
Application Programming Interface (API) program advocates at-
tend or host hackathons, create tutorials, give assistance, and more,
spreading the good word of API on and offline. From advocacy
at Google to Twilio’s evangelism, the precise makeup of developer

https://en.wikipedia.org/wiki/Guy_Kawasaki

Day in the Life of an API Developer Evangelist 120

relations is still being defined. With all this interest in a relatively
new title, it made us question, what exactly does an evangelist do
on a daily basis? And, most importantly, what advice do they have
for creating a successful, thriving developer community?

So, we’ve reached out to the masters for their insights. For anyone
seeking to become a tech evangelist, or who has recently been
ushered into the role of promoting an API program, this is the
chapter for you. For this Q&A session we interviewed five API
developer evangelists from throughout the industry.

8 Important Job Roles of a Software
Evangelist

1: Be sure who your users are

Most agree that the number one job of a software evangelist
is to intimately understand your consumer. According to Daniel
Rudmark, a senior researcher at Viktoria Swedish ICT, attracting
developers to an API program must be grounded in empathy:

“I often find that organizations publishing APIs do not
sufficiently recognize that developers are not paid up
front for their work — they come to you for some
other reason which you need to understand and support.
Remember, they spend their valuable time on your API”

As we mentioned in a previous chapter, there is an increasing
amount of diversity amongst third party developers — varying tech-
nical understandings, different industry backgrounds, geographical
location, and more contribute to your user persona, who may turn
out to be different than you think. According to Guillaume Laforge,
product lead and APIs dev advocate at Restlet:

https://www.viktoria.se/
http://nordicapis.com/how-to-understand-your-target-api-consumer/

Day in the Life of an API Developer Evangelist 121

“There are tons of different developers, using different
languages, different tech stacks, focusing on different
devices… think about which ones to target first”

Evangelists must intimately understand this audience, but must
also foresee shifts in audience that could occur as a product grows.
Evangelists placed into a legacy community have just as an
important role in sustaining and extending a user base. As Keran
McKenzie, Developer Evangelist for the MYOB API program told
Nordic APIs, it all starts with knowing your audience:

“In some ways I was lucky in that I inherited a legacy
community so I had an initial base to start with, in
other ways because of that legacy base, it dictated the
path we took. Once you know your audience (and
“All developers” is not a valid answer to who is your
audience) you can begin to work out targets for building
new community, plans for content & resources and
event activity.”

2: Communicate the value(s) of the product

The next most important role of an evangelist is to efficiently
communicate the value of the product. As developers are the
lifeblood of APIs, they are the consumers that must be sold on
the benefit of your API if they are ever going to use it. This role
stems from a technical understanding of the product, knowing how
the product stands out from its competition, and an easy, open
relatability with others.

An evangelist must always be prepared to communicate value in
many situations — whether it is a quick description to a colleague,
writing tutorials in a developer center, a long-form blog post, or
pitching a demo at an event,

http://nordicapis.com/what-makes-an-api-demo-unforgettable/

Day in the Life of an API Developer Evangelist 122

“the primary role of a developer evangelist in forming a
developer community is to help customers and potential
users see the value and benefit in your product or API to
such an extent that they themselves become evangelists
for your company.” - Liz Rush, Developer Evangelist at
Algorithmia

A successful API program turns users into evangelists, thus en-
abling the most effective, time-tested marketing tool possible —
word of mouth.

Awesome functionality is easy to communicate — for example, the
Star API gives you real-time lumosity, color, and spacial data for
over 100,000 astronomical positionings. Though there is certainly
value in the data or functionality wrapped in your API, McKenzie
adds that reputation is just as interconnected with value:

“In many cases however the value of the API is actually
the value of your brand, your market and partnerships
beyond the initial data/content or service”

3: Ensure the program is attractive and
usable

It makes sense that developer experience (DX) has become a
focal point for treating API services as usable products. As an
API evangelist is the bridge from product to community, they
must evangelize DX as well. Evangelists often build and upkeep
developer-facing resources, such as the developer portal, SDKs, and
language libraries.

“…you need to provide technical tools that enable swift
problem-solving to avoid developers having to figure
out the many quirks of your product” - Daniel Rudmark

http://star-api.herokuapp.com/
http://nordicapis.com/why-api-developer-experience-matters-more-than-ever/
http://nordicapis.com/beautiful-ui-design-for-api-developer-portals/
http://nordicapis.com/what-languages-should-your-api-helper-libraries-support/

Day in the Life of an API Developer Evangelist 123

We’ve covered the many ways to improve API usability with things
like content negotiation, hypermedia, API gateways, Mullet-in-the-
back architecture philosophy, and much more. To be agile, API
programs must balance simplicity and complexity, have ongoing
testing, and always be compiling feedback from users on how to
improve.

Proper design is unique to the service and thus complex to define
— but you know bad design when you see it. Evangelists need to
evangelize the best version of their product not only externally, but
internally as well.

As with any technical product, support channels must be in place
to aid onboarding. A good dev center and documentation should
answer most of this, but the best evangelists will jump on a call to
quickly aid a developer user to success.

4. Always be observing, talking, and
gathering feedback

Evangelists are vocal. Online they blog, prowl Stack Overflow,
maintain GitHub repos, manage developer-dedicated social chan-
nels, and respond to all comments or questions. Evangelists often
take on a customer support role, and must offer rapid and effective
customer service.

To Rush, the most important aspect of being a successful evangelist
is a willingness to talk and answer people’s questions…no matter
the setting…even the dance floor—

“…you have to be prepared to be “on” at almost any
time. Yes, the majority of it is done at meet ups, on-
line, conferences and the like, but honestly it happens
at unexpected times too, ranging from someone who
overhears you talking about algorithms in line at the

http://nordicapis.com/content-negotiation/
http://nordicapis.com/improve-api-experience-using-hypermedia/
http://nordicapis.com/api-gateways-direct-microservices-architecture/
http://nordicapis.com/balancing-complexity-and-simplicity-in-api-design/
http://nordicapis.com/api-design-testing-state-art/

Day in the Life of an API Developer Evangelist 124

coffeeshop to chatting with someone you just bumped
into on the dance floor at a warehouse party.”

McKenzie sees transparency as “hugely important in the role of an
evangelist. We are often the face/voice of the brand, so we need
to be as open as we can.” As developers rely on the uptime and
consistency of your product, this means communicating negative
changes with care. When an API is updated or retired completely,
the way a company delivers this message is often “more important
than the message itself.”

5. Host, attend, or speak at events

The sea of API-related events has expanded tremendously in recent
years. A traditional event model has been to host hackathon com-
petitions that encourage developers to build things with your API,
often for a prize incentive. Proposing talks at larger conferences is
also important to get the word out and learn from others. However,
evangelists must be selective, and tailor their travel time and events

http://nordicapis.com/instagram-api-and-the-transient-nature-of-public-social-apis/
http://nordicapis.com/instagram-api-and-the-transient-nature-of-public-social-apis/
http://nordicapis.com/api-lifecycle-retirement-stage-a-history-of-major-public-api-retirements/

Day in the Life of an API Developer Evangelist 125

to be in-sync with their program objectives. Often, this means
supporting smaller events or partnering with other hack events
rather than hosting your own:

“Too often people think building a community means
running a hack event, we found that running our own
hack events didn’t fit our API, however attending &
participating (as a team vs API vendor) in hack events
was invaluable for building out a community. The
best thing you can do is roll up your sleeves and get
involved.” - Keran McKenzie

Digital events like screencasts or webinars can be helpful too. But
physical conferences are places to share projects, discuss strategies,
and easily network with people who have the same interests. How
could we not append this role? :) Contact us if you’d like to speak at
a future Nordic APIs event, and come to our API Stack Conference
in April!

6. Build and maintain a knowledge center

Blogging is important, but some argue that building is even more so.
A developer advocate creates content that speaks louder than they
could alone. This includes instructive tutorials, integration walk-
throughs, and shared stories from the developer community, all
organized with beautiful site architecture and design. All this does
a lot to support your API, but at the end of the day, documentation
is king.

“In the API world, you have to treat the documentation
and content you provide as your number one priority
as an evangelist. If you have poor or no documentation
for your API, most potential customers won’t be able to
use it and will give up almost instantly.” - Liz Rush

mailto:info@nordicapis.com
http://nordicapis.com/events/helsinki2016/
http://ryanhoover.me/post/66778907266/blogging-vs-building
http://nordicapis.com/beautiful-ui-design-for-api-developer-portals/

Day in the Life of an API Developer Evangelist 126

LaForge adds that the onboarding process and documentation
should be constructed in a way that appeals to the specific use case
for the API:

“Spend a lot of time on the on-boarding process, how
developers get started, with great API documentation.
But not just “reference” documentation, but thinking
hard about concrete use cases, in terms of scenarios:
developer X wants to do Y, here is how to do it with
the API.”

7. Translate technology trends

Evangelists help revitalize stagnation. Following fluctuations in
technology can help an API program be agile and responsive
to industry momentum. Adam Duvander, a developer advocate
at CenturyLink Cloud, began his career writing with Wired and
ProgrammableWeb, and continually shares what he observes and
researches in the field:

“I translate back-and-forth between the technical and
non-technical to put trends into context”

Framing the technical in a way that entrepreneurs, marketers, or
designers can comprehend is helpful for all involved. A learned, vo-
cal, opinion on innovative tech strides, whether it be microservices,
Golang, or Docker, etc., can be greatly appreciated by a community
that depends on your specific tech to survive.

8: Build a community of heroes

At the helm of the API ecosystem, the evangelist fosters a sense of
community around an API. If your marketing team executes all

http://nordicapis.com/what-makes-an-agile-api/
http://www.adamd.org/#mywork
http://nordicapis.com/how-to-control-user-identity-within-microservices/
http://nordicapis.com/writing-microservices-in-go/
http://nordicapis.com/docker-containers-and-apis-a-brief-overview/

Day in the Life of an API Developer Evangelist 127

of the activities stated above (on top of having a stellar product)
you should see overall usage increase, and a community emerge
around the service. That being said, there’s a fine line here — you
can’t really force “community” to happen. Evangelists can only
encourage its evolution. Be helpful, but don’t be a drag:

I like to talk about “being in their face” but “out of their
way”. We need to be visible, the developer community
need to know we are here to make them heroes in their
own right, at the same time we need to put everything
in place so we can be invisible and out of their way.” -
Keran McKenzie

For McKenzie, community building means constructing all the
tools for support — resources, documentation, articles, tutorials —
everything that enables a community to be as “self sufficient and
effective as possible.”

“A community could emerge out of the blue, by simple
virtue of having a useful and popular API…but more
often, you’ll have to encourage developers to use your
API, by providing on-boarding resources, easy demos,
developer portals with top-notch documentation, a fo-
rum, a super reactive support team… you’ll have to play
on several fronts to get a community to form, especially
on the communication channels you’ll open up with
that community.” - Guillaume Laforge

What does an Evangelist do each
day?

The daily work of developer evangelism and advocacy comes down
to responding to the user’s needs. But, certain tasks come up often

Day in the Life of an API Developer Evangelist 128

enough to get a general idea of the role. Through interviewing
evangelists in the field, we found that some of the tasks they
perform on a daily basis are as follows:

Customer relations Events Support
Social media activity Travel Respond on Stack

Overflow
Authoring blog
content

Host webinars Dev center
maintenance

Weekly newsletter Speak at events Test the API
Recognize and award
hero developers

Research, gather
feedback

Work on Github
helper libraries

Evangelism vs Advocacy

There is arguably enough of a difference between the job roles of
an ‘evangelist’ and ‘advocate’ to make certain distinctions.

In the proposed 5 level maturity model for developer relations,
advocacy is at the top, defined as a two-way dialogue in which de-
veloper support and gathering feedback is paramount. In the same
hierarchy, evangelism is a rung below, and consists of attending
conferences, explaining, and the like.

Writing on his personal blog, ex Pusher advocate Phil Leggetter
analyzes the dev relations mission statements for Google and
Twilio. Using these cues, Leggetter built the DevRelOMeter, a
cool tool that will tell you if your team is actually performing
evangelism (awareness & aquisition) or advocacy (product support
& retention).

http://softwareas.com/developer-relations-a-five-level-maturity-model/
http://www.leggetter.co.uk/2016/02/03/defining-developer-relations.html
https://leggetter.github.io/devrelometer/

Day in the Life of an API Developer Evangelist 129

Use the DevRelOMeter to see if you’re practicing ‘evangelism’ or ‘advocacy’

What developer relations — or devrel — consists of will inevitably
be unique to that company, but critically considering the ROI for
certain activities surely helps.

Q&A Section

What lends to the best interaction with
customers? How do you help developer

users the most?

McKenzie: “I think it’s the unexpected events that tend
to lead to best interaction. Let me give you an example.
Last year Jack Skinner & I were in Auckland, NZ for
an event when a support ticket from a developer came
through. We were just a block away, so Jack headed
over to their office just at 5pm as they were packing up.
He spent an hour or so with them going through the
issue, making sure things were solved and delighting
this customer. They were not expecting Jack to turn up,
let alone go that extra mile to ensure everything they

Day in the Life of an API Developer Evangelist 130

needed was solved. Of course we can’t always go out
and see customers like that. Sometimes it’s as simple
as picking up the phone vs emailing a response as a
great way to drive a delightful experience the developer
community.”

Rudmark: “From my research where I have both per-
formed a great number of in-depth interviews and
analyzed video recordings of developers having used
APIs I would say that the number one way to help
developers is understanding what developers may be
struggling with and make sure to resolve these issues.
The tricky part is that such information seldom reaches
the API provider and that the developer often just quits
working with the API. This means that you need to be
very mindful about how you deal with and act on the
(little) feedback you actually get - it is quite often just
the tip of an iceberg.”

Laforge: “Be kind, be friendly, be helpful, try to provide
the best level of support, and on-boarding experience.
Then when your API evolves, be sure to keep users
updated, try to avoid breaking compatibility if it can
be avoided, try to improve the API (improve usability,
response time, provide more features)”

Nash: “The best interactions come either when a devel-
oper has integrated the API and are delighted at how
simple it was and just want to say “thank you” or when
a developer is having trouble with a certain part of the
API and I’m able to help them out and get them back to
building their application.”

Day in the Life of an API Developer Evangelist 131

How do you retain users?

McKenzie: “In our space our developer program is much
more than just an API. It’s about a partnership…retaining
developers for us speaks to building a true partnership.
I personally spend a lot of time with this group of de-
velopers talking about their customers, their solutions
and how to bring those to market.”

Rush: “In the API world, the question of customer
retention is primarily taken care of with one simple
rule: don’t break things. Of course, this is dependent on
what you’ve done to bring users in: you have to prove
the added value of your service, show how easy it is to
integrate & use, and more broadly speaking, solve more
problems than you create for your customers.”

Nash: “User retention is the job of the entire company. If
the product works, is priced well and has good support,
account management and much more then users should
be retained! I don’t concentrate on user retention ex-
actly, as I see evangelism as more outreach and finding
and supporting developers…though I do pitch in with
support on social channels, such as StackOverflow and
GitHub”

In your opinion, is dev evangelism support,
sales, marketing, or a new breed of

employees?

McKenzie: “It’s definitely a merger of all three. You
can’t be a developer evangelist if you can’t cut code,
likewise if you can’t have a solid sales conversation,
discuss go-to-market plans and of course actually get

Day in the Life of an API Developer Evangelist 132

out and market your API, then you aren’t going to go
far…. Finding a Developer Evangelist is (I think) one
of the hardest roles in business to fill. When you find
someone, do everything you can to nurture and hold
onto them.”

Rush: “This is a contentious question among evangelists
— in fact, many don’t even use the term “evangelism”
because of the fact that it has become nebulous and of-
ten misapplied to sales engineers or support engineers. I
think of evangelism as a new but growing role different
from support, sales, and marketing. Since evangelism is
often most popular among companies that provide APIs,
the terms don’t fit quite as well since these traditional
divisions are often blurred, especially in the startup
world.”

LaForge: “It’s really at the crossroad of all those activi-
ties. That makes the job even more challenging and in-
teresting because you can tackle different classic areas:
a developer-oriented evangelist might be more keen on
crafting a demo for supporting a customer, another one
with a creative personality might love authoring great
articles and documentation resources, etc….It’s also the
kind of job that you can tailor yourself, depending on
your own aspirations, as well as according to the needs
of your company.”

Nash: “At Twilio we are part of the marketing organ-
isation and that works well for me. We may perform
support tasks, but getting out there in developer commu-
nities and talking to developers face to face and online
is the priority.”

Day in the Life of an API Developer Evangelist 133

Conclusion

The actual tasks an API evangelist performs will often fluctuate,
especially as roles are blurred in the startup world, as Rush points
out above. Arguably, openness and transparency triumph in the
position. If you are going to have an active voice in the developer
community, it definitely helps to integrate these core ideals into
your presence.

At the end of the day, API programs want apps to flourish —
meaning that evangelists are only successful when the developers
they support are successful. Phil Nash, developer evangelist with
Twilio, framed it well when he told us:

“I am successful when the developers I serve are suc-
cessful, whether that is writing a Twilio app or not.”

Interviewees:

Thank you to our interviewees for participating in this Q&A! We
didn’t intend to be exclusive with our panel, and hope we get the
chance to talk with other API evangelists and advocates on the topic
in the future.

• Daniel Rudmark | Senior researcher, lecturer| Viktoria Swedish
ICT, University of Borås |

• Guillaume Laforge | Product Manager, API Dev Advocate |
Restlet

• Keran Mckenzie | Developer Evangelist | MYOB API
• Liz Rush | Developer Evangelist & Software Engineer | Algo-

rithmia
• Phil Nash | Developer Evangelist | Twilio

https://twitter.com/rudmark
https://www.viktoria.se/
https://www.viktoria.se/
http://www.hb.se/en/
https://twitter.com/glaforge
https://restlet.com/
https://twitter.com/keranm
http://developer.myob.com/
https://twitter.com/lizmrush
https://algorithmia.com/
https://algorithmia.com/
https://twitter.com/philnash
https://www.twilio.com/

How to Offer
Unparalleled Developer

Support
APIs are necessarily a communal endeavour — the community
fostered between the users, the providers, and those who depend
on the API for the functions of their own services drives the
development environment of the API space.

Accordingly, understanding what makes developer outreach so
essential to cultivating your own network of users and agents
is incredibly important. Beyond understanding this importance,
figuring out the proper channels, frequency, and methodologies of
effective developer outreach can turn a powerful product into an
absolute powerhouse.

The Importance of Developer
Outreach

First of all, let’s consider specifically why developer outreach is
so important. A system is only useful when it’s used — without
a group of developers who use a system, that system is essentially
isolated, and loses a lot of its potential.

API providers face three unique obstacles to API adoption — Lack
of Awareness, Lack of Understanding, and Lack of Vision. Let’s sep-
arate each of these, and consider their impact on an API provider.

Lack of Awareness is, simply put, the lack of awareness that a
platform or service even exists. How many times has a product been

How to Offer Unparalleled Developer Support 135

displayed, a solution first encountered, where the average person
says “of course, why didn’t I think of that?!” The fact is that most
people are unaware of the tool in our hypothetical because they
didn’t know they had the problem, and they were thus unaware
the solution ever existed.

The same issue comes into play with API provisioning. If a devel-
oper needs a solution for a complex problem — and they often do
— not marketing a product or making others aware of the product’s
existence is as bad as having no product whatsoever.

Lack of Understanding, however, is a more fickle, and possibly
damaging, beast. While a developer might be aware of the product,
the daunting requirements for its use, whether actual or perceived,
can end a budding relationship extremely fast. Poor error returns,
poor documentation, even lack of forum presence can doom an
API to the “rejected” pile for the simple reason of “hard to use, no
support”.

Finally, Lack of Vision plagues many developers. This is not to say
developers are not creative, or are unable to envision a product —-
quite the opposite in fact. This is to say, however, that developers
are often unable to envision your product and its usefulness unless
clearly identified.

Questions like “why do I need this” and “how does this help
me” are often issues of lacking vision, but again, not because
the developer lacks the skills to see the possibilities — the API
provider has simply provided no example use cases, or functional
descriptions in plain english upon which to base this vision of
successful implementation.

Thankfully, each of these can be easily rectified using a few basic
techniques.

How to Offer Unparalleled Developer Support 136

Email and Social Media

A joke for the internet age — a company consults with a firm on how
to improve their marketing and sales. The firm asks if they have any
significant social media presence. The company scoffs, and says “of
course we don’t have an social media presence — we’re the internet
provider!”

It might not be a particularly good joke, but it is certainly insightful
— when it comes to business on the internet, many companies
still think in the age old “paper and direct sales” mentality. Be
professional, directly market, and you’re good to go! That’s not the
reality of the modern age, however.

API communities, as with other online spaces, are primarily ones
of consuming online resources and communicating in that medium.
Accordingly, API developers are some of the most active and
prolific users of both email and social media, and not just for
“CatFacts” and live tweets about Game of Thrones. API developers
use these channels for distributing new services, testing functions
and calls, discovering new solutions, and even authenticating with
tools.

Failing to have a proper presence online is one of the best surefire
ways to doom an API provider to obscurity. Leveraging proper
online presence, however, can leverage your initial successes to
dizzying heights.

There are basically two approaches to online presence generation
and long-term maintenance. These approaches are forked in two
general directions — direct and indirect.

Direct outreach is simply direct communication with interested
developers or developers within a stated demographic. Engaging
users on email or social media when they have demonstrated an
interest in or desire for a given solution can inform that the product
already exists, and has a stellar team behind it.

How to Offer Unparalleled Developer Support 137

This does run a rather significant risk, however — when’s the last
time a consumer received a casual cold-call and said “oh, thank
you, that’s great, we will absolutely use your service”? The fact
is that poorly formed initial discussions and pushy sales methods
can do more harm than good, so these relationships should be
somewhat casual in nature, framed within the concept of one
developer helping another. A great example of this is the “cold
response” when signing up for an API. Seeing a “personal message
from the co-founder” that is obviously automated is one of the
worst symptoms of this situation.

While this might seem ineffective, you will always find more
success and goodwill in the concept of “one dev helping another”
than you will in the concept of “I have a great product to sell you”.

The other approach is one of indirect marketing, also referred to as
“word of mouth”. Creating a stellar online presence publishing blogs
pertaining to the industry, showing new, experimental projects, or
even just sharing partners that you think are amazing can do a lot
to link the brand of the API provider with the success of the referred
products.

This is not to say that online portals should be an advertisement
— reputable testimonials are definitely helpful, but something like
“I’m Kristopher Sandoval, and when I generate API documentation,
I use DocuGen” simply comes across disingenuous, and could do
more harm than good.

Instead, offer solutions — post chunks of code you find interesting,
or platforms that you think others could use, and tie them into
your API, framing it as a “portal to great solutions”. If you open
these channels of communication, when developers come looking
for solutions, they will find you.

A quick note on email and social media responses — this is not
a one-sided conversation. When you are tweeted at, commented
on in YouTube instructional videos, contacted via email, etc., you
must respond in a timely, professional manner. Networks live and

How to Offer Unparalleled Developer Support 138

die by the strength of their individual components — even one
poor experience made public can color the way all other developers
interact with you.

Event Hosting and Attendance

The API space might be a digital one, but the developers are entirely
human. We too often forget that behind every server, behind every
terminal, integral to every chunk of API code, there is a living,
breathing, unique human, with a range of experiences informing
their skill and opinion.

Events, therefore, present a unique opportunity to engage the
community in ways that might not otherwise be possible. When
we discuss events, what we are really discussing is any event hosted
by an API provider where like-minded developers, providers, users,
and other interest parties can congregate to discuss the API space,
either in detail or generality.

There are a huge range of potential benefits of hosting an event.
First, there is the obvious value-adding experience of the event itself
- after all, how can a developer who comes into the city for a three
day bonanza of free coffee, great donuts, and an amazing service
leave with a poor view of the provider?

More importantly, however, is the opportunity for the developer
to engage in a more direct, personal way with the userbase that
social media simply cannot match. Identifying big players in the
API space, what they might need, and what their users have
communicated to them not only helps you coalesce knowledge that
would otherwise be unattainable, it also helps establish the API
provider as a helpful entity seeking to make the industry a better
place.

There is a third benefit, and its importance simply can’t be over-
stated — hosting events is a great way to create an independent,

How to Offer Unparalleled Developer Support 139

thriving community and knowledge base. Inviting developers to
a get together and walking them through common use-cases and
solutions tests your product, informs you as to its shortcomings and
strengths, and creates in users a direct knowledge of the product
from the creators themselves.

This helps additionally create an inventive and forward-thinking
space. Giving a vision of the way things could be with your service
or product is one of the hardest things an API provider can do —
and one that is done rather effectively in such an event.

Keep in mind, however, that these events cannot be just about the
API provider — it needs to be a unified community effort. Don’t be
the kid that demands everyone come to their birthday party with
presents, and then is mysteriously never around for anyone else’s.

Documentation and Knowledge
Bases

Documentation will set you free. That simple phrase has guided
more than its fair share of developers, and it rings truer as the sys-
tems that drive this crazy and beautiful interconnected information
superhighway become ever more complex.

The quickest way, therefore, for an API provider to fail in attracting
developers is a lack of documentation and knowledge provision for
their services. Failing to document the core functionality is a nail in
the coffin for the grave dug by the API provider — but even failing
to document the small things can gradually add the dirt over your
head.

There are two trains of thought on documentation, however, which
run in stark contrast to one another. One is the idea that documenta-
tion must be done directly and through the efforts of the developer
creating the system itself, and that this documentation should be
the end-all-be-all.

How to Offer Unparalleled Developer Support 140

While this certainly adds a great deal of control over the resultant
documentation and the community the uses it, it has several
drawbacks. The first and most prominent is the added stress upon
the API provider. While basic documentation is a core requirement,
documenting every solution to every problem that might or might
not arise in an infinite number of situations is daunting, and
borderline impossible.

Just as important is the fact that documentation from the developer
will often come from those who wrote the code, and at time, can
be too technical in nature. Writing documentation for machines
is an unfortunately common mistake — especially when human
readability is the ultimate goal for most of these projects.

While having good error reporting, syntax, style constraints, and
documentation codes can do a lot to help in this regard, the undue
stress is simply too massive for most API providers.

The second train of thought is the concept of the user knowledge
base. The concept is simple — creating a database where users
can tag issues, perhaps in ticket form or even a wiki-like interface,
allows users to document radiant and new issues, as well as their
solutions, for future users.

The main benefit here, of course, is that the documentation will
be by its very nature human-readable. Because the documentation
was generated directly from the userbase, it will be easily read by
the userbase, and if it in fact is found to be too difficult to read or
use, the number of users willing to fix it will be more often than
not larger than what could be provided by the API provider.

There is of course, as with all of these topics, a huge caveat. Repeat
the following — knowledge bases do not replace human contact.
Too many corporate databases exist documenting issues found on
APIs, operating systems, and applications that terminate with a
generic answer — this is a failure in communication.

When a user finds a knowledgebase article, the best hope is that
it answers their question and gives an easy solution. If it does not,

How to Offer Unparalleled Developer Support 141

however, terminating at the article and replacing your social media
presence with this simple article or ticket can doom an API faster
than anything else.

Remember — knowledge bases should augment and support email,
forums, and social media, not replace them.

Conclusion

These basic techniques and approaches should comprise 99% of
most API provider’s strategies when it comes to fostering unparal-
leled developer outreach. While some of it seems common sense,
many would be surprised at just how common and epic these
failures in basic outreach are, and how damaging they are to the
API space.

Adapting these solutions will provide the leverage that API providers
need to succeed, catapulting initial success and goodwill to a new,
higher plane.

Accumulating Feedback:
4 Questions API

Providers Need to Ask
Their Users

American activist Bryant H. McGill once said, “one of the most
sincere forms of respect is actually listening to what another has
to say.” For API providers, listening to the average user, accepting
feedback, ingesting these experiences, and iterating on this infor-
mation is a powerful exercise.

That being said, what questions should developers should ask their

https://en.wikipedia.org/wiki/Bryant_H._McGill

Accumulating Feedback: 4 Questions API Providers Need to Ask Their Users 143

users in the first place? Knowing what to ask, when to ask it, and
how to ask it, is just as important as ingesting the eventual response
— perhaps even more important, when considering how it sets the
developer/user dichotomy and tone of discourse for the future.

In this piece, we’re concerned with answering a singular question
— what questions should API developers ask their users and how
should they ask them?

Why Feedback is Important

We’re not paying lip service, here — consumer feedback is pos-
sibly the most important element of any development ecosystem.
Building an API is essentially a design puzzle, matching the specific
needs the user has communicated with the specific talents, skills,
and limitations of the development environment.

When developers don’t match the needs of their customers to their
development strategy and long-term goals, a rift is created between
the user and the developer. This rift is the prime cause of most
hardships when it comes to customer acquisition, retention, and
user experience.

So how does a developer prevent this rift? That’s where com-
munication comes into play. Developer relations takes many
forms, ranging from basic social interactions on Twitter and official
forums all the way to email campaigns and direct conversations.
The utilization of effective and complete API metrics is also a key
factor leading to the success of an API.

Now that we understand the importance of this feedback, the
question arises — what questions should be asked?

http://nordicapis.com/success-vs-failure-the-importance-of-api-metrics/

Accumulating Feedback: 4 Questions API Providers Need to Ask Their Users 144

What Do You Expect From This API?

As we noted in our article on drafting readable platform policy,
expectations drive all business and social interactions. The match-
ing of user and provider expectations will drive the overall user
experience of the API and relevant services, and can go a long way
towards informing both your public image for other potential users
and the internal experience of utilizing the service.

Let’s frame this as a common-sense manner. It’s your birthday! As
part of your celebrations, you’ve decided to go out for dinner at a
restaurant that just opened down the street. Looking at the prices,
you decide it is rather expensive, but worth the extra expense.

When you go to this restaurant, your expectations of service, food
quality, and interactions with the wait staff defines your perception
of that restaurant and that meal, for better or for worse. If you have
low expectations of the restaurant, but instead receive a five-star
meal with wonderful service, that communicates a fault in your
expectations. Conversely, if you expect the best and receive low
quality food and slow service, that communicates faulty expecta-
tions from the service provider.

In this example, you expect quality for the high cost. The same is
true with API users — discovering and utilizing your service over
others requires an investment of time and effort, and failing to
provide value to that resource investment can lead to a negative
perception of the entire experience.

By asking directly what your users expect, you can not only
gear your performance and service to a high expectation, you can
help to level out their long-term expectations of development and
implementation.

A great example of this is the development cycle adopted by
Mojang, developers of the hit PC game Minecraft. During their
Early Alpha development cycle, they made it clear that, though

http://nordicapis.com/a-humans-guide-to-drafting-api-platform-policy/
http://nordicapis.com/tips-to-improve-the-discoverability-of-your-api/
https://mojang.com/

Accumulating Feedback: 4 Questions API Providers Need to Ask Their Users 145

they had big plans, implementation would be slow. When they
began selling Minecraft and entered “beta”, they noted that the
user experience may be fraught with bugs and issues, but that users
should expect periodic updates to fix these issues.

Mojang asked the users what they wanted. They asked them what
they expected the game to look like, what items should be included,
and what mechanics they would like to see. They then communi-
cated the realities of the development platform, expressing what
was feasible and what wasn’t. They tempered expectations while
gathering these expectations as a platform from which to guide
future development.

Everything from inventory slots to combat mechanics have been
tweaked and manipulated given user feedback. Every build of
the game is released in a beta channel for user testing, and the
Minecraft forums are often flooded with data points for user
experience that the dev team often calls from during their second
testing phase.

While this example isn’t necessarily in the API space, it does
demonstrate specifically how powerful an open channel of commu-
nication is. Mojang is known amongst its community of followers
as a company that cares, a company that communicates, and one
that can be depended on to implement things when it says they will
implement them, with few exceptions. Most importantly, users are
aware of the realities of their expectations, and whether or not they
can be implemented at all.

By making beta builds open, users can test the code — a benefit
previously discussed in our piece on GitHub. Likewise, the open
channel of communication allows for common security vulnera-
bilities and “happenchance” discoveries to be communicated and
quickly fixed, preventing zero-day exploits and vulnerabilities.

API providers need to follow suit. Ask your users what they
expect the functionality to look like. Ask users what they want
the API to do, and how they want it to do these things. By under-

https://twitter.com/dinnerbone/status/601690099429023744
https://hypixel.net/threads/your-chance-to-give-feedback-and-suggestions-to-the-minecraft-combatsystem-1-9-update.296661/
http://minecraftforums.net/
http://nordicapis.com/why-api-devs-love-github/
http://nordicapis.com/day-0-flash-exploits-versioning-and-the-api-space/

Accumulating Feedback: 4 Questions API Providers Need to Ask Their Users 146

standing what your userbase expects, you can guide development
in such a way as to minimize backlash and maximize satisfaction
with the end product.

What Is Your Greatest Frustration
with the API?

Often, issues with an API aren’t communicated directly — not out
of a lack of channels for communication or out of fear — but out
of simple embarrassment or perceived “bother” for the developer.
Users can think “well, this is a beta API, so I won’t bother them
with a request; hopefully it is resolved in a later revision”. Still other
users can say “maybe this isn’t an API issue, butmy own issue… I’m
not a very good coder, after all”.

Much of this thinking can be harmful to the API ecosystem. By as-
suming the fault lies with the user, and not the provider, legitimate
issues often go unchecked or unmanaged, only to be found out at a
much later date as part of a bug audit or a feature-breaking update.

The best way to work around these issues is to engage the user in
a conversation about what they perceive as “frustrating”. Instead
of asking a leading question, such as “where does your usage
often fail” or “what do you feel you can’t do”, ask about their
frustrations. This will lead to some greater insight about the
functionality of your API, and can potentially highlight issues that
may otherwise be unaddressed.

Asking about common frustrations helps to inform where your
user experience fails. When a user runs into something frustrating,
sometimes it’s a result of confusing navigation, poor documenta-
tion, or faulty functionality notations. Highlighting these failures
and addressing them improves the user experience, and thereby
improves the quality of your API.

http://nordicapis.com/api-model-canvas-developer-experience-is-a-key-ingredient-of-quality-apis/

Accumulating Feedback: 4 Questions API Providers Need to Ask Their Users 147

Secondly, allowing your users to vent frustrations helps guide devel-
opment by showing weaknesses in functionality. When frustrations
arise that aren’t related to documentation or other similar issues,
they’re largely because of poor functionality. A user might find
a call frustrating when it doesn’t perform as expected, or returns
incomplete data.

While this is often corrected on the user side or processed through
error-correction, finding these issues early on and correcting them
helps put development on the right track. Identifying common
issues and rectifying them can turn a middling API into a truly
useful and functional service for the API’s users.

Finally, and most importantly, providers need to create a communi-
cation channel with developer users. Whether this means having
official API forums, dev Twitter handle, a public email address, or
even just a custom Google form, ensuring there’s a path to vent and
discuss is just as important as accepting this feedback.

Why Did You Choose Our API?

A “potential user” is of limited metric use, as they’re a complete
unknown. Potential users are wildcards, and attracting them to
your API in the first place may be a complex discovery process.
“Current users”, however, represent high value and important met-
rics because they all share common interests that drew them to
your API. Metrics are an incredibly important and powerful tool
for API developers, and failing to tap into these types of metrics
could doom an API to obscurity and low user integration.

Asking why users chose your particular API over the bevy of
other choices on offer does a lot to inform the developer about
not only the specific user’s wants and behaviors, but helps define
your unique value proposition, and aids your marketing attempts
in targeting others in their set demographic.

http://nordicapis.com/functional-vs-useful-what-makes-a-useful-api/
http://nordicapis.com/tips-to-improve-the-discoverability-of-your-api/
http://nordicapis.com/success-vs-failure-the-importance-of-api-metrics/
http://nordicapis.com/success-vs-failure-the-importance-of-api-metrics/

Accumulating Feedback: 4 Questions API Providers Need to Ask Their Users 148

The API economy has evolved, and their are now many types of
consumers using APIs. You likely have a wealth of demographic
data on your specific user; age groups, hardware and browser
profiles, geographic location, etc. Pairing this profile with what
specifically enticed different consumers to your API could be
powerful knowledge for segmenting lean marketing campaigns.

If you know why people flock to your API, future development
can be geared toward specialization, emphasizing the qualities and
functionalities considered “unique” and “attractive” to these users,
while mitigating the negative aspects that might otherwise have
turned them away.

Keep in mind however that this sort of data can be overreacted to,
leading to “mob rule”. While adjusting to the wants and desires
of the majority user group is important, it is equally important
that developers attempt to stave off feature creep and bloat. This
philosophy is most commonly referred to as the 80/20 rule in agile
software development.

If You Could Change Our API, How
Would You?

Sometimes the best way to get useful, actionable information is
to just flat out ask for it. Asking your users what they’d change
about your API is akin to that age old “if you were President/King”
question, and opens up an avenue of direct change that would
otherwise be obscured.

The key to implementing this question effectively is to ask for
specific, actionable responses. A response like “better integration
with media services” is not an actionable response, as it doesn’t list
the services which the user would like to better integrate with, nor
how those services tie into the API functionality.

http://nordicapis.com/how-to-understand-your-target-api-consumer/
http://nordicapis.com/how-to-understand-your-target-api-consumer/
https://dzone.com/articles/applying-8020-rule-software

Accumulating Feedback: 4 Questions API Providers Need to Ask Their Users 149

A better response would be something like “increased tools to
integrate with media extensions to the APIs data handling suite”.
When responses are given, extra details should be requested as part
and parcel.

Keep in mind that it must be clearly communicated to users that not
all changes are possible. Changes to core functionality outside of
planned expansion, changes to how services interact when it would
cause feature breaking, and so forth should all be noted as caveats.

Methods to Use for Accumulating
Feedback

This is all well and good, but all the questions in the world
won’t matter without having an effective means by which the
question can be asked and gathered. API providers can quickly find
themselves in a sort of catch-22 — getting this feedback is important,
but the source of this feedback can determine its liability, and the
method of procurement could even drive consumers away.

Likewise, understanding when to ask these questions is just as
important as figuring out how to ask them. There is no magic
bullet type answer to this question, but if we look at two theoretical
applications of these concepts, we can see some things to avoid, as
well as some methods that excel.

Example One - Ineffective Questioning

An API provider by the name of KAL Laboratories, or KAL for
short, is performing a survey of their userbase to improve prof-
itability and identify new markets. The lead programmer, Shawn,
decides to start the questionnaire with a bevvy of technical ques-
tions.

Accumulating Feedback: 4 Questions API Providers Need to Ask Their Users 150

These first few questions hinge around the languages used by the
API, and contains questions such as “do you like the Twitter API
integration that we did with the data handling package?” and “what
do you think about the use of Go?”.

The questionnaire gets passed on to the public resources specialist,
Sandra, who adds her own questions. Things like “did you know
about our work with non-profit charities?” and “what are your
favorite websites?” abound.

Finally, the questionnaire is lightly edited, put into a stock form,
and is blast-emailed to all the users who have registered their email
as part of the API registration process. The questionnaire gets very
few answers, and the userbase declines.

What Went Wrong?

Straight off the bat, there are some huge issues with the method-
ology by which this questionnaire was constructed. First and
foremost, the scope is extremely broad — identifying new markets
and increasing monetization revenue is a huge topic and one that
respondents could easily feel put-off by.

Secondly, the questions aren’t very useful. Because the tone of the
questions vary wildly depending on who is asking them, and go
from high-technical to “fluff”, the questionnaire would be hard to
take serious at best, and annoying at worst. Even if the questions
were well-formed, providing them in a stock form without brand-
ing or explanation makes it easier to disregard the survey.

Finally, the questionnaire was distributed in an annoying way.
Respondents likely did not know their emails would be used for
analytics like this, and as such, when they are inundated with what
is essentially spam mail, their opinions of both the API provider
and its product will decline rapidly.

Accumulating Feedback: 4 Questions API Providers Need to Ask Their Users 151

Example Two - Effective Questioning

Seeing the poor response to their first questionnaire, KAL decides
to re-evaluate their approach. First of all, they look at their motive
and questions. Their original stated goal was to investigate how
to “improve profitability” and “identify new markets”. While these
are understandable goals, they are not properly framed. Improving
profitability comes with understanding why profits are artificially
depressed, and identifying new markets comes with understanding
what your API does well (and equally what it does poorly).

With this in mind, a team meets to discuss a new questionnaire.
Instead of relying on only two people to construct the survey,
questions are submitted to the PR team for vetting, a handful of
10 are selected, and the survey is restructured to ease feedback
with easy questions up front. The entire experience is reviewed and
refined internally.

A limited trial begins. A set of “power users” are asked if they would
like to take a questionnaire during a routine support conversation.
They agree to do so, and take the survey. They give their answers
not only to the questions on the survey, but to pointed questions
about the quality of the survey itself.

With this information, the team again reviews the questions and
vets them before issuing a general email call. This time, instead of
cold calling their users, they simply notify the userbase that they
will begin issuing periodic surveys to improve functionality — and
that users may simply opt out to not receive them.

After a short period, the first survey is sent out, metrics are
analyzed, and the activity is deemed a resounding success.

What Went Right

The most important thing here is the fact that everything was
done via a process. Before, everything from the construction of the

Accumulating Feedback: 4 Questions API Providers Need to Ask Their Users 152

survey to its application was haphazard. In this variation, the team
not only pinpointed what specifically they wanted to know, but
discussed how to ask.

This vetting is key to the process. While an engineer might legit-
imately want to know what a user thinks of their complex code
and resultant front end, the question should not be “What is your
opinion of our front end live page?”, but rather, “Is our portal easy
to use?”.

Next, the team reached out to a select number of trustworthy
users to test these questions. Being able to test questions in a
microcosm gives you the benefit of extrapolating general responses
to your survey without actually incurring the cost of performing
the survey.

Finally, once these questions were tested, the team reached out to
users to inform them of their intents — and to give them an opt
out option. Forcing questions upon your userbase is ineffective and
counterproductive. Rather, tell your users why your survey exists,
and make it completely optional. This gives the user a sense of
control, and increases the value of their response as well as the
frequency by which the average user will respond.

Think As a User

At the end of the day, compiling these sorts of questions is incredi-
bly useful for an API provider. It helps validate your product’s di-
rection, as well as the viability, necessity, and desire for additional
services with new monetization possibilities.

The takeaway from all of this is simple — think like a user.
Imagine logging into your email one day to find a huge survey
foisted upon you by a company that you at one time thought as
non-intrusive and privacy respecting. Imagine this survey is filled

Accumulating Feedback: 4 Questions API Providers Need to Ask Their Users 153

with grammatical errors, non-sensical questions, and confusing
terminology. How would you respond?

Keep this in mind while forming your questions and conducting
your surveys — it could mean the difference between informative
analytics and a ruined reputation. If done right though, a survey
process will demonstrate you truly share your developer user’s
journey and path to success.

How to Hold a Killer First
Hackathon or Developer

Conference

Part of what makes modern API development so much more
powerful than ever before is the fact that, at the tip of one’s fingers,
an entire world of lessons, examples, and fellow developers are
within reach.Community and the resultant feedback has made API
development and the APIs that are created from this process more
extensive, more powerful, and more effective.

Fostering this community is of prime importance. As an API
provider, hosting a hackathon or developer conference can not
only help increase the visibility of your API, your techniques, and
your company, but can also create connections between developers
and a sense of fellowship around your service.

In this chapter we discuss exactly what hackathons and developer

How to Hold a Killer First Hackathon or Developer Conference 155

conferences entail and how to host them, including what works,
what doesn’t, and what pitfalls may arise. We’ll consider how to
market these events, and how to make them a truly powerful tool
for advocating or evangelizing your third party developer program.

Types of Get-Togethers

For people new to the concepts of hackathons, meetups, workshops,
and developer conferences, let’s quickly define exactly what these
events are.

What is a Hackathon?

Hackathons are events in which programmers, providers, and team
members related to development collaborate in the usage, creation,
or manipulation of software or hardware projects. Hackathons
might be free form, where developers are given code or API access
and are allowed to do what they wish, or might be guided, wherein
a cause or goal is given and used to guide programmer efforts.

In the API space, what this functionally means is that a hackathon
is a “get together” focused on skill implementation. Providers and
developers unify their efforts to create something unique that
consumes the provider’s API in some way. This collaboration and
implementation of divergent ideas and processes can reveal new
development methods, highlight core strengths, and can even help
highlight deficiencies in the current API space or system being
demoed.

How to Hold a Killer First Hackathon or Developer Conference 156

What is a Developer Conference?

A developer conference, on the other hand, is typically a “show and
tell” style conference in which developers, programmers, users, and
sometimes even other API providers are brought together to see
what an API provider has to offer. This might take the form of live
demonstrations, code workshops, or private API servers for testing.

Conferences often have a roster of speakers, keynote speeches, and
parallel tracks, adding huge value to the attendees. Essentially, a
conference is a direct pipeline to the minds of the best and brightest
in the given topic, which is incredibly powerful and a great sell to
most users in the API space.

More often than not, developer conferences are sponsored directly
by API providers or API management providers for the purpose of
increasing the visibility of the service in addition to establishing a
knowledge-base of the API services and functionalities within the
developer community.

There are exceptions, however, such as conferences where API
documentation companies or groups representing developer con-
sortiums gather to instruct one another on the functionality of
various APIs and on business practices in general related to the API
space.

What’s the Difference?

What’s the difference between the two? Hackathons specifically fo-
cus on the interactive nature of collaboration to spread knowledge
and marketing about an API by allowing users to extensively use
the source system. In essence, this is a form of “viral” marketing.
When hackathons are supported, funded, and built by and around
an API provider and their API, the word of mouth conversation
about the hackathon will naturally disseminate information.

How to Hold a Killer First Hackathon or Developer Conference 157

For example, if AlchemyAPI sponsored an API hackathon to de-
velop experimental and extensible applications and systems utiliz-
ing the API, the word of mouth conversation would necessarily tie
the successes of the API hacks into the AlchemyAPI itself. Likewise,
developers who utilize the AlchemyAPI would be more aware of
its power and functionality, and would be more likely to use and
recommend it to fellow developers who are developing applications
that might make use of the API.

Developer conferences and meetups, on the other hand, are much
more instructive, and rely on direct dissemination. Whereas a
hackathon might impart knowledge based on the interaction with
a system in a loose and free nature, the developer conference
specifically sets out to answer specific questions, and provide
specific solutions. A simple analogy would be that a hackathon is
an internship, while a developer conference is a classroom.

How to Host an Event

That being said, how does one actually host such an event? Many
few factors must be considered before inviting your guests — if
the following is considered, followed closely, and implemented
correctly, your first hackathon will be a killer powerhouse, and your
developer conference a smashing success.

1: Identify Your Goal, Theme, and Audience

Key to the success of these meetups is understanding exactly why
the API provider is holding one. Is this for marketing? Is it for
building knowledge? Is it for getting users excited about new
systems? Identifying a mission statement early on is absolutely
necessary, as it will guide your event theme, speakers, sponsors,
marketing, presentation materials, and audience.

How to Hold a Killer First Hackathon or Developer Conference 158

Knowing who your attendees will be is critical. Are you trying
to imbue knowledge to students and foster the next wave of API
programmers? Hosting your event at a school will attract this raw
talent and establish yourself in the minds of young programmers.
Are you rather focusing on business? Utilizing a hall or conference
center would be a great choice, as it instills a sense of profession-
alism, and often provides a greater range of business services to
clients and attendees.

Themes that focus on a certain technology or sector can go a long
way towards making a meetup unique, and will also inform you as
to the answers for the following questions and hypotheticals in this
piece.

2: Secure the Financing and Venue

In terms of business interests, securing a venue and the financing
for the event is of prime importance.

You must consider what sort of venue is appropriate given your
circumstances. While an international API provider handling mil-
lions of contacts a day might opt for a convention center, this is far
beyond the means and needs of other startups or SMB providers.

For smaller providers, a simple clean space will do just fine. Ensure
that you have a venue that has decent connectivity for distributing
API packages if you are connecting to an external server. Otherwise,
ensure that you have production-ready local servers that can be
used to handle the amount of people you are considering inviting
to the meetup.

Once this is done, consider the system requirements of your con-
ference. Is this a “bring your own device” conference, wherein
users must bring their own laptops and systems? If so, consider
storage spaces for equipment containers and extraneous system
paraphernalia.

How to Hold a Killer First Hackathon or Developer Conference 159

Expanding upon this, ensure that your conference system require-
ments match to your expectations. Ensure you have the following:

• Server hardware capable of handling your predicted atten-
dance pool plus 25% to ensure load balancing is not an issue;

• Projectors, screens, HDMI cables, adapters, or other presen-
tation platforms capable of displaying high resolution to the
furthest attendees given the size of your attendance group;

• Wireless access points and repeaters near “traps”, such as
corners, thick doors, etc., that might kill wireless coverage;

• Load balancing devices and security systems - dedicating a
security appliance to a subnetted network can go a long way
to securing your network.

If you intend on giving users host machines of their own, consider
whether this is in the budget or feasible given your goal. For devel-
oper conferences, it might be simpler to rent out a co-working space
usually reserved for freelance programmers. For both hackathons
and conferences, it might even be feasible to find a University or
College which will allow you to use conference rooms or computing
spaces.

In terms of financing, your main concern should be whether or not
the meetup is free. Free conferences and hackathons are necessarily
more expensive than paid, “entry fee” ones, but might result in
greater attendance.

On the other hand, paid conferences can afford to provide more
services and better equipment, but might attract fewer people based
on cost. Much of the expense of paid conferences can be negated
with sponsors, however, and this is becoming more and more the
case in recent years.

How to Hold a Killer First Hackathon or Developer Conference 160

3: Get People Excited

Let’s face it — API development can, at times, be a dry affair
for even the most passionate developers. Now imagine you are in
marketing or business development, and you have been invited to a
developer conference, or your team has been invited to a hackathon
and you are to be their point of contact.

Many people’s first response would be “no, this is boring”. Assuag-
ing that feeling and making people excited for these meetups is no
small task, but with a little planning, you can turn that “boring”
comment quickly into “wow, that sounds amazing!”

Consider adding a challenge to the conference, one that has
an amazing award. Hosting a hackathon? Consider having first,
second, and third place prizes for the result, each with a monetary
or high-value prize. Developers might be more willing to attend a
conference for the promise of three months of free server rental or
a cash prize. Not only does this investment get people motivated,
it also shows that the provider is interested in giving back to the
community.

Prizes add subconscious value to an event by matching the effort
required with a possible reward. If someone asked you to help them
move, what would your first response be? Now imagine they ask
you to help them move — and told you there was a coin flip at the
end of the day, and the winner would take home $1,000 USD. Now
what is your response?

Additionally, consider location and travel expenses. A team might
be wary of visiting a hackathon in a small town far away from
major tech centers. If able, hosting an event in a major city or
tech hub could do wonders for attendance, and can dramatically
increase the success of your meetup.

Finally, consider this age old truth — people love to eat. Providing
snacks or even catering meals during the event would dramatically
boost morale and interest in the occasion. Strapped for cash?

How to Hold a Killer First Hackathon or Developer Conference 161

Consider inviting food trucks or stands to your event parking lot.
While you might incur additional cost for the parking area, giving
your patrons options for healthy onsite food does a lot to get people
excited.

4: Prepare for Pitfalls

No event is perfect, and no matter how much you plan, something
will inevitably go wrong. Understanding potential pitfalls to your
first hackathon or developer conference is paramount to your
success.

First, understand that networks are unpredictable. Many a con-
ference has gone awry when providers simply can’t get the WiFi
to work, or have limited network access. To prevent this, try not to
use built-in networks whenever possible.

Running Cat 5e cables and covering them with floor strips might be
aesthetically displeasing compared to using the almighty wireless
access point, but attendees won’t remember wall warts and cable
runs if you do everything right — they will, however, remember
being unable to use your system at all, and this experience will
directly reflect in what they have to say about the conference after
the fact.

Use production ready servers with the understanding that nine
times out of ten, nothing goes wrong — but that one time, ev-
erything goes wrong. Allowing servers to update could fundamen-
tally break huge sections of your system, server failures or RAID
cluster failovers can break database demonstrations, and even a
misconfigured network card attached to the main network can
break functionality depending on the network design.

Consider this when building your network, and install redundancy
at every step — the only person who knows something went wrong
should be the event host. The audience should not even notice a
failure if you’re doing it right.

How to Hold a Killer First Hackathon or Developer Conference 162

Food poisoning is something nobody ever forgets — and it will
always be tied to you and your conference if you’re not careful.
Catering is typically safe, depending on reviews, but hiring food
trucks or operating in a venue that provides a food court can negate
this threat and shift responsibility somewhat.

Environmental issues are also extremely important to consider,
both in terms of impact and surroundings. In terms of environ-
ment, providing proper methodologies and locations for disposing
of technological waste and general waste is incredibly important,
and can certainly influence the perception of any given conference.

Make sure your venue is clean, that it has air conditioning, and
that the design of the presentation booths provide for optimal
presentation spaces, safety, and flow of the crowd. A great example
of failure in this realm is the 2016 Google I/O conference, which is
infamous for its long lines, sweltering heat, and generally poorly
managed facilities and surroundings.

Also consider event security. Malicious attacks are not beyond
the range of possibilities, and you need to plan accordingly. Im-
plement cyber security systems, secure local routers and hubs,
consider using baseline security filters, and consider providing
custom systems with security implementations that won’t harm
the network. Secure the production servers from other servers
containing personal information or company documentation, and
create a virtual private network for any essential equipment that
must share this information at the conference.

Finally, a huge element of a great conference is having capable
presenters. Having an “MC” who can direct the flow of the
conference, announce events, and coordinate all of the solutions
presented above can go a long way to not only preventing these
issues from cropping up, but negating the issues that arise when
you fail to do so.

http://thenextweb.com/google/2016/05/19/google-io-2016-look-not-run-large-event/#gref
http://thenextweb.com/google/2016/05/19/google-io-2016-look-not-run-large-event/#gref

How to Hold a Killer First Hackathon or Developer Conference 163

5: Don’t Sweat It

Hosting these meetups improves the community and integrates the
API provider as a source of knowledge. Bringing people together
to learn about or use your system builds community knowledge
of your product, develops skills that can then be brought into the
fold either through volunteer efforts or direct hiring, and brings the
community closer together.

In conclusion, the best piece of advice that can be given to an API
provider is simply this — “don’t sweat it”. The API space moves so
fast and is filled with so many entrepreneurs that you can always
call upon others for a little bit of help.

Has your system failed? If you’re in the right location, networking
supplies and servers should only be a phone call away. Ran out
of food? If you’ve planned ahead, ordering in a few more trays of
food should be simple. Network facing internal attacks? Cut off the
virtual private network behind a DMZ and find the source of the
problem.

Once you’ve planned it out, let the conference or hackathon be
what it’s going to be — forcing things will only cause issues, and if
you’ve taken this advice to heart, it should “run itself”.

What Makes an API
Demo Unforgettable?

This is the Age of the API (Application Programming Interface).
No matter what type of software you work with, you will likely
have to deal with APIs on some level. When a developer visits an
API website, you will see plenty of documentation, sample code,
use cases, and endorsements that make you feel one click away to
start consuming. However, there is something that can convince
you more than a website can: watching an amazing live API demo.

If you are on the other side of the story and have your own API, you
must prepare an API demo. Your API must compete for attention
and then convince others that — among all the existing alternatives
— it is the best solution and is worth trying. Usually the Developer
Evangelist is the person jumping to the floor with a laptop to
rock the stage with their API demo at a hackathon, meetup, or
conference. If you are a developer building APIs, it’s likely that
sooner or later you will have to demo your API at these sort of
events as well. Whether you’ve done it before or not, knowing the
best practices is invaluable.

After observing a large number of great API demos — from amazing
to dull — the best, most unforgettable API demos have the
following six points in common:

What Makes an API Demo Unforgettable? 165

1: Describe the API, in a few words.

Finding a clear and concise way to describe your API is an obvious
first step. Great demos introduce the API in a very concrete way,
starting with real situations. Speaking in abstract terms is out of
question, and in practice it’s very easy to get lost in acronyms
(HTML, REST, SOAP, JSON, etc) and developer jargon. You must
answer the question “Why does your API exist in the first place?”
Using metaphors, stories, or examples of people with real names
can be helpful aids. The optimal explanation isn’t either too long
or too short, like in this example where SendGrid’s Swift explains
SendGrid API in a nutshell:

“SendGrid is an API company that makes it super
simple for you to send and receive emails from your
applications. A turnkey solution for any time you need
to deal with anybody’s email on your app: password
resets, alerts, etc.”

2: Convince we all share the same
values of the API

This is an easily underestimated point. Doing it will make sure
you have identified a connection between you or your company
and your audience: we have the same struggles and we all are
developers creating amazing software and applications to solve
people’s problems. Developers attend hackathons and technical
conferences to learn and try new things, and often to discover
solutions to challenges that they already face.

Convincing the audience of a shared value will create a stronger
emotional bond than just ending the demo saying “you’re welcome
to try our API”. In a presentation with Nordic APIs, Ronnie Mitra

https://www.youtube.com/watch?v=-5gZ4FwL-ro
https://www.youtube.com/watch?v=ibdR53lyxhA

What Makes an API Demo Unforgettable? 166

does a fantastic job of establishing shared values by reinforcing the
importance of user experience design with a worst case presenta-
tion scenario — great acting!

3: Impress with how great and easy
your API is

There are many aspects that make an API outstanding, such as easy
onboarding, usability, scalability, maintainability, security, stability,
support, and compatibility with other major solutions. However,
even if you API excels in all these areas, some are too abstract for
a brief demo.

An unforgettable API demo is created as a performing show that
in addition to educating will entertain people. One of the require-
ments is that the code looks really easy and short. A good way
to measure the length is asking yourself: do I need to scroll down
the screen? A great example is Twilio’s John Britton demo. Pay
attention to the simplicity of the code. That really impresses. This
demo created a conference call that could be joined by anybody
ringing a randomly selected local number. This short demo ends
capturing and displaying the full list of phone numbers of the
participants (Surprise!).

4: Interact with the audience

Even though these types of demos are usually short (less that 10
minutes, even as short as 3 minutes), just watching a text-based
code editor can be boring. Great demos involve the audience. There
are many ways to do it: ask participants to take their own gadgets
and open a webpage, write and send either an email or SMS,
ask to cast a vote, look at your camera, shout, etc. One of the

https://www.youtube.com/watch?v=ibdR53lyxhA
https://www.youtube.com/watch?v=ibdR53lyxhA
http://original.livestream.com/nytechmeetup/video?clipId=pla_8b03ead8-b68f-4f04-9744-2e0e85274b03

What Makes an API Demo Unforgettable? 167

most accomplished demos is again by Twilio’s John Britton, who
interacted with dozens of participants.

A strong reason to interact with the audience is that API demos
often force the speaker to stand behind a lectern. Have you noticed
this? In contrast, think of how many times you have seen a TED
talk speaker behind a lectern. That’s indeed very rare. Interaction
breaks the barrier that is almost inevitable in every API demo.

5: Live coding mastery

“Talk is cheap, show me the code” —Linus Torvalds

Certainly the main element of an API demo is live coding. Live
coding mastery involves a number of good practices that when put
together produce amazing results. Some elements are:

1. Making your code short. The live code itself must be very
short (1 minute in total, which can imply 2 or even more
sections) and leave the rest of the time for the audience to
see the results, and even interact with the outcome.

2. Make it easy to display code on the screen. Rehearse in
advance to see what is the best way to display your code.
This will involve the choice of your code editor, the color
of text and background (usually black characters in white
background are the best), and even the fonts. Take into
account that the quality of the projector, screen, and lighting
of the room will affect how your audience sees your code.

3. Explain what you are writing in sync. Say in a clear way what
every line you write is going to do. It will help tremendously
if the names of functions are self-explanatory. Needless to say,
if you already follow good coding habits, this is easier.

https://www.youtube.com/watch?v=-VuXIgp9S7o&feature=youtu.be

What Makes an API Demo Unforgettable? 168

6: A theater-like script

If you ever performed in theater, you must have learned and mem-
orized a script by heart, maybe adding your own interpretation to
the lines. For an API demo, similarly prepare a step-by-step script
for yourself. Why this is so important? You must know exactly
which parameters you will use for every example — the order of
steps makes a huge difference. The successful guys who have had
memorable API demos are all said to have rehearsed the same
sequences dozens of times. Some claimed to have even dreamt
about it.

Another huge advantage of using a written script is that it makes
your demo repeatable. If your next meetup isn’t for a few months,
you don’t have to rely on your memory to start preparing yourself
again. An API demo is a play, not improv.

An extra piece of advice is: reduce the number of steps to the
minimum, and minimize the number of parameters. All this will
reduce the probability of failure.

Preparation for potential technical
flaws

Things we don’t see also matter. It’s highly recommended to have a
list of technicalities in advance. Some of them can be checked well
in advance and others when you are at the venue. Normally we
don’t see it, but a well-prepared developer will do this before the
API demo. It can save you from a disaster and help you to recover
quickly.

Here’s a list of items that would have a big impact if they fail:

What Makes an API Demo Unforgettable? 169

Item How to be prepared
Laptop If using your colleague’s laptop, make sure

it’s configured with the same settings ready
for the demo

Internet connection As Internet connections might have
unknown restrictions, have your own mobile

connection ready
Web browser Have a second browser installed and checked

that the whole demo works flawlessly
User account Create an extra user account with same

privileges
Cables and accessories Bring extra cables, adapters and other

accessories. Pay special attention to this if
you visit another country

A final piece of advice is: time yourself and stick to the allotted time
slot. The most successful API demos are short and to the point. So,
when it’s your time to rehearse, set an optimal time length and
repeat the demo until you and the chronometer are in sync.

Conclusion

Following these six best practices and preparing for potential flaws
will make your API demo unforgettable, and will make you or
your company’s end goal of stimulating developer adoption more
realizable. Great demos have the power to transform a technical
event into an enjoyable, memorable, and inspiring experience.
Ultimately, it will inspire developers to build great things with your
API, which will bring value to end users. Feel free to share other
amazing API demos in the comments section and tell us why they
were unique.

We wish you a successful next API demo. It’s API time. It’s
showtime!

Case Study: Twitter’s 10
Year Struggle with
Developer Relations

In September 2006, only a few months into its existence, Twitter
came out with the first version of its public API. This was sur-
prisingly early in an age when social APIs were not yet prevalent,
especially since Twitter had yet to become the success story that
seems so obvious in hindsight. In fact it was mostly a reaction
to third party developers scraping their website Twitter.com and
creating unofficial APIs.

It marked the start of a long and at times contentious love-hate
relationship between Twitter and third party developers. In this
chapter we delve into some of the events of the last 10 years and
explain the motivations behind some of Twitter’s most controver-
sial decisions. We’ll also compare Twitter’s record on developer
relations with those of two other social networks - Facebook and
Instagram.

2006 - 2010: The early days

The first version of Twitter’s API was a free-for-all and instant
hit. It opened up a lot of the social network’s inner workings to
developers, enabling full access to tweets and content published
by users on Twitter. Any developer could use the API — they

https://blog.twitter.com/2006/introducing-the-twitter-api
https://blog.twitter.com/2006/introducing-the-twitter-api
https://blog.twitter.com/2006/introducing-the-twitter-api
http://nordicapis.com/instagram-api-and-the-transient-nature-of-public-social-apis/

Case Study: Twitter’s 10 Year Struggle with Developer Relations 171

simply needed to authenticate using the username/password com-
bination of their regular Twitter account. No further limitations
were imposed. The sheer amount of data offered generated plenty
of interest among developers, and many companies started building
products on top of the Twitter API — apps included Favstar.fm,
DailyBooth, TweetDeck, Tweetbot, Echofon and Twitterrific.

Just as Twitter’s user community was credited for inventing some
of its defining features, like hashtags and retweets, the API devel-
oper ecosystem also paved the way forward. Among the early
third party apps, TinyURL and bit.ly enabled URL shortening
within tweets, Summize offered up the first full-text search engine
on top of Twitter, TwitPic let Twitter users share pictures, and
Tweetie — not Twitter — built the first Twitter iPhone client.

Some of the other apps (like Echofon and Tweetbot) were Twitter
clients that offered an alternative to Twitter.com for users who
wanted to consume the same content through a different user in-
terface (Twitter would later call them ‘traditional Twitter clients’).

2010 - 2012: OAuthcalypse,
competing with third party apps and

other perceived betrayals

The honeymoon between Twitter and third party developers ended
in 2010 when Twitter’s management enacted a series of decisions
that were greeted with anger and disappointment.

Twitter announced that all third party applications requesting
data on behalf of its users needed to authenticate to the Twitter API
using the OAuth protocol. This change was inevitable for security
reasons — OAuth was quickly becoming the standard for secure
delegated authentication and authorization, and afforded a much
better alternative to the Basic Authentication scheme that was in

http://favstar.fm/
https://tweetdeck.twitter.com/
http://tapbots.com/tweetbot/
http://www.echofon.com/
http://twitterrific.com/ios
http://gizmodo.com/the-very-first-hashtag-reply-and-retweet-ever-1445615063
http://tinyurl.com/
https://bitly.com/
https://blog.twitter.com/2010/twitter-applications-and-oauth
http://nordicapis.com/api-security-oauth-openid-connect-depth/
http://nordicapis.com/api-security-the-4-defenses-of-the-api-stronghold/

Case Study: Twitter’s 10 Year Struggle with Developer Relations 172

place before its adoption by Twitter. It also afforded the company
better visibility over which applications were connecting to the
API.

However this change caused distress among the ranks of the
developer community, as many apps had depended on their API
for years and weren’t ready for such a change. OAuth was not yet
widely adopted at the time, and many developers struggled with
its implementation, not to mention the changes in user experience
it brought along. Bloggers were quick to call it the ‘OAuthcalypse’,
and ‘#OAuthcalypse’ became a trending topic on Twitter itself.

While imposing OAuth is easy to defend in hindsight, Twitter also
started building features within its own website that competed with
or replaced existing third party apps. Starting a trend that it would
repeat several times in the future, it purchased Tweetie (renaming it
Twitter for iPhone) and Summize (renaming it Twitter Search) and
announced that they would become part of the core platform, strik-
ing fear in the hearts of developers building competing services.

Twitter developed their own URL shortener and threatened to deny
all others. During Twitter’s Chirp developer conference that year,
then-CEO Evan Williams pronounced: “We are probably not going
to give people a choice. If they want to use a different shortener,
they can use a different app”. Once again this was badly received,
although Twitter had solid reasons for introducing a native URL
shortener at the expense of competing specialists — namely security
and analytics.

Finally, Twitter signed partnership deals with Google, Yahoo, and
Microsoft to include tweets in the results of their respective search
products. Furthermore, it gave exclusive data reseller access to
Gnip, a data reseller it would later acquire. Both of these deci-
sions, motivated by Twitter’s thirst for additional traffic and their
need to generate revenue, caused consternation when they were
announced.

http://nordicapis.com/4-apps-rely-apis-survival/
http://mashable.com/2010/04/24/twitter-oauthcalypse/#wztYxxVFAmqu
https://support.twitter.com/articles/109623
http://www.computerweekly.com/news/1280092587/Twitter-to-launch-URL-shortener-and-may-block-TinyURL-and-bitly
http://www.computerweekly.com/news/1280092587/Twitter-to-launch-URL-shortener-and-may-block-TinyURL-and-bitly
http://www.computerweekly.com/news/1280092587/Twitter-to-launch-URL-shortener-and-may-block-TinyURL-and-bitly

Case Study: Twitter’s 10 Year Struggle with Developer Relations 173

2012 - 2013: Token limits and open
war on traditional clients

Beginning in 2012, Twitter further tightened their terms of service.
It imposed a 100,000 token limit on connected users for apps that
“mimic or reproduce the Twitter consumer experience”, crippling
many of them, and set per-endpoint rate limits across the board.
OAuth authentication became mandatory for all endpoints, and
Twitter introduced Embedded Tweets and Timelines as an alterna-
tive to applications that wanted to replicate part of the core Twitter
experience in their own apps.

Two main reasons explain these changes. Having raised huge
amounts of venture capital, and in preparation for a late 2013 IPO,
Twitter needed to increase its ad revenue. As the conflict between
its willingness to attract developers and its need for monetization
increased, Twitter started to openly discourage the use of the API
by those building tools that would compete for eyeballs with
Twitter.com. In addition, Twitter had to some extent become victim
of its own success and had faced many technical problems and
outages. Curtailing the use of its API would help control the amount
of traffic that was allowed from third party apps.

In the wake of these changes several Twitter competitors such as
App.net were started, but such was Twitter’s dominance of this
space that none have come close to dethroning it.

2013 - Present: Post-IPO
controversies

Any hopes that developer relations would significantly improve
following Twitter’s IPO would soon be dashed.

https://blog.twitter.com/2012/changes-coming-in-version-11-of-the-twitter-api
http://www.theverge.com/2012/11/11/3631108/tweetro-user-token-limit-api
http://www.theverge.com/2012/11/11/3631108/tweetro-user-token-limit-api
https://app.net/

Case Study: Twitter’s 10 Year Struggle with Developer Relations 174

In 2015, shortly after live video-streaming startup Meerkat became
a hit, Twitter acquired its competitor Periscope and temporarily
revoked Meerkat’s access to the Twitter API. It also acquired Gnip
and shut down agreements for resale of data with its other partners
(DataSift and NTT Data), which was qualified as an “evil move” and
“innovation destroying”.

Later the same year the Open State Foundation’s API’s access was
suspended. The Foundation had leveraged Twitter’s API to archive
deleted tweets by politicians and make them searchable on its
website Politwoops. Twitter later restored Politwoops’ API access,
but this was another blow to its reputation as an open platform and
an enabler of innovation.

Most recently, in November 2015, Twitter removed the Tweet count
JSON endpoint to public outcry. The REST API still has the same
features, but it is less precise and exposes the data in an aggregated
or limited manner. The only way to get the same analytics data is
through Gnip’s expensive Enterprise Search API.

Wooing back developers

Despite all of these controversial decisions, Twitter’s developer
ecosystem remains healthy due to its unique status as a major
social network. Many companies built on top of Twitter’s APIs
are alive and doing well today, like Buffer, Hootsuite, SparkCentral
(formerly Twitspark) and Storify.

Nevertheless Twitter is facing challenging times, with layoffs, a
change at the helm of the company, executive departures and a
declining share price. Twitter’s management understands that they
need to invest in a strong developer ecosystem to remain relevant
going forward.

In particular, Twitter needs to find new monetization channels,
and the chief battlefield is mobile, where Facebook is currently

http://techcrunch.com/2015/03/13/how-periscope-works/#.fxy26l:TKeD
http://www.pcworld.com/article/2896404/twitter-cuts-off-meerkat-wont-let-it-import-who-you-follow-on-twitter.html
http://www.pcworld.com/article/2896404/twitter-cuts-off-meerkat-wont-let-it-import-who-you-follow-on-twitter.html
http://www.infoworld.com/article/2908869/big-data/twitters-firehose-shut-off-is-the-newest-hazard-of-the-api-economy.html
http://www.infoworld.com/article/2908869/big-data/twitters-firehose-shut-off-is-the-newest-hazard-of-the-api-economy.html
http://www.theguardian.com/technology/2015/aug/24/twitter-blocks-access-political-transparency-organisation-politwoops
http://www.theguardian.com/technology/2015/aug/24/twitter-blocks-access-political-transparency-organisation-politwoops
http://www.politwoops.eu/
https://blog.twitter.com/2015/hard-decisions-for-a-sustainable-platform
https://blog.twitter.com/2015/hard-decisions-for-a-sustainable-platform
http://warfareplugins.com/is-twitter-seriously-removing-share-counts-why-would-they-do-this/
https://buffer.com/
https://hootsuite.com/
http://www.sparkcentral.com/
https://storify.com/
http://techcrunch.com/2015/10/13/twitter-is-laying-off-8-percent-of-the-company/
http://www.theverge.com/2015/6/11/8767881/twitter-ceo-dick-costolo-is-leaving-the-company
http://www.theverge.com/2015/6/11/8767881/twitter-ceo-dick-costolo-is-leaving-the-company
http://techcrunch.com/gallery/twitters-brief-history-of-twitters-executive-departures/
http://siliconangle.com/blog/2016/01/25/twitter-share-plummet-as-company-confirms-executive-purge/
http://siliconangle.com/blog/2016/01/25/twitter-share-plummet-as-company-confirms-executive-purge/
http://nordicapis.com/how-to-grow-and-profit-using-a-freemium-api-monetization-model/

Case Study: Twitter’s 10 Year Struggle with Developer Relations 175

outperforming Twitter, in part due to lack of developer interest in
the Twitter platform.

In the last few years Twitter has turned its focus towards mobile
developers. It has recently developed or acquired a set of new
tools to help developers build better mobile applications while using
the Twitter API, and indirectly generating more revenue via their
MoPub mobile ad service.

Developers are therefore critical to the next phase in Twitter’s
evolution, but its reputation is holding it back. At the Flight
developer conference in October 2015, newly reappointed CEO Jack
Dorsey offered an apology to developers for past mistakes, echoing
the words of his predecessor Evan Williams five years before, and
promising to usher in a new era of collaboration between Twitter
and its developer community.

New releases and optimism going
forward

Beyond these soothing words, Twitter showed how determined it
was to win back developers by announcing its new capabilities.
Many of these revolved around Fabric, its mobile development plat-
form, which now includes the popular mobile crash monitoring
and reporting tool Crashlytics, a recent acquisition, along with two
key new features: Beta, an app distribution and tracking tool for
beta testers, and Answers, a mobile analytics dashboard.

In addition to Crashlytics, Fabric features the Twitter Kit, the
rebranded Twitter SDK for mobile development, and Digits, a
simplified authentication mechanism based on phone numbers
rather than usernames and passwords (an enabler of SMS-based
services). Another recent acquisition that made its way into Fabric
is Fastlane, a tool that eases the deployment workflow on apps for
iOS and Android.

http://www.wired.com/2014/10/twitter-fabric-sdk/
http://www.wired.com/2014/10/twitter-fabric-sdk/
https://dev.twitter.com/flight/2015
https://dev.twitter.com/flight/2015
http://techcrunch.com/2015/10/21/twitter-ceo-dorsey-apologizes-to-developers-says-he-wants-to-reset-relations/
https://gigaom.com/2010/11/17/twitter-screwed-up-with-developers-founder-says/
https://gigaom.com/2010/11/17/twitter-screwed-up-with-developers-founder-says/
https://get.fabric.io/
https://try.crashlytics.com/
http://try.crashlytics.com/beta/
http://try.crashlytics.com/answers/
https://get.digits.com/
https://fabric.io/blog/welcoming-fastlane-to-fabric

Case Study: Twitter’s 10 Year Struggle with Developer Relations 176

Time will tell whether these efforts will convince developers to give
Twitter another shot, and if the tension between the company and
its developer community will subside. One reason to be optimistic is
that Twitter is consciously steering developers away from building
features on top of its core product and is positioning its API as an
enabler instead, in the same vein as developer darlings Stripe and
Parse.

Twitter is often singled out for its problems with the developer
community, but its advocates argue that this is an unfair as-
sessment, pointing to Twitter’s numerous contributions to open
source software (such as Bootstrap, Bower, FlockDB, Gizzard and
Finagle).

Certainly, other social networks have had similar woes. In the
next section we’ll briefly look at two other giant social networks
and how they handled relations with their respective developer
communities.

Other social networks

Developer relations at Facebook

Facebook had the relative luxury of having a stable vision (and
a stable website) before public social APIs became fashionable.
Launched in 2006 — shortly before Twitter’s API — Facebook’s
Developer API gave access to its users’ friends, photos, events and
profile information. This ushered in a golden age of social gaming,
with game developers like Zynga, the makers of Farmville and
Mafia Wars, and PlayFish, the makers of Pet Society and Who Has
The Biggest Brain, benefiting from viral effects that only Facebook
could enable. In addition to games, applications that leveraged
Facebook’s social graph, like Zoosk, got a huge boost from the
Facebook platform.

https://stripe.com/
http://parse.com/
http://getbootstrap.com/
http://bower.io/
https://github.com/twitter/flockdb
https://github.com/twitter/gizzard
https://twitter.github.io/finagle/
https://www.zynga.com/
https://www.facebook.com/playfish/
https://www.zoosk.com/

Case Study: Twitter’s 10 Year Struggle with Developer Relations 177

A few years later though, as users complained about spammy apps
and games spoiling the user experience, Facebook gradually cur-
tailed the viral marketing tactics that powered these applications,
thereby also limiting its own appeal as a development platform.

Facebook had its share of failures with their developer API, and
was the recipient of a great deal of criticism from developers. It
unsuccessfully tried to launch a virtual currency during the early
years, and more recently shut down Parse, their mobile BaaS
acquisition beloved by mobile developers, although they allowed
the code to be open sourced and gave developers a one year notice
period to migrate away.

One area where Facebook has made a mark is in delegated au-
thentication — their OAuth API is highly popular due to the sheer
number of people with facebook accounts and the social proof that
users can benefit from when they connect to an application with
their Facebook account.

Developer relations at Instagram

Instagram seems to have benefited from being a late addition to
the ranks of super-social networks, with the advantage of hindsight
helping them avoid mistakes, but at the same time suffered from
lack of resources in the early years.

Instagram was launched in October 2010 and already had a million
users after only three months. By that time, it was unthinkable
for a major social network not to release its own public API.
Because of its astonishing growth, Instagram was caught unawares
as developers started clamoring for a fully-featured API.

The company wanted to focus on the core user experience, avoiding
distractions, so they didn’t immediately accede to the demands of
their would-be API consumers. But because Instagram was a mo-
bile-first product, it was possible in December of the same year for
a developer called [Mislav Marohni] (https://github.com/mislav) to

http://www.adweek.com/socialtimes/early-winners-losers-from-facebooks-platform-changes/566154
http://www.adweek.com/socialtimes/early-winners-losers-from-facebooks-platform-changes/566154
http://techcrunch.com/2011/08/11/facebook-wins-worst-api-in-developer-survey/
http://www.adweek.com/socialtimes/farewell-facebook-credits/428240
http://parse.com/
http://nordicapis.com/why-you-should-build-apps-with-an-api-backend-baas/
https://www.comparitech.com/blog/vpn-privacy/facebook-twitter-google-or-linkedin-which-should-you-log-in-with/

Case Study: Twitter’s 10 Year Struggle with Developer Relations 178

reverse engineer its private API’s initially unencrypted calls to and
from the mobile UI and create an unofficial API. At least one fully-
featured app (Followgram, a self-styled Instagram directory) was
built on top of this unofficial API. In January 2011, Instagram shut
it down though, and released an official API in February.

In time its main features included the ability to search for pictures
by hashtag or location, the ability to incorporate pictures into
a website or a mobile app and to print photos. Within days, a
host of photo sharing apps and mashups were released by third
party developers. The more popular ones surviving to this day
include Websta, Flipboard, Casetify, Gramfeed, Collecto (formerly
Followgram and Social Print Studio.

Following the Facebook acquisition in 2012 (and given the need to
monetize its hundreds of millions of users), Instagram has been able
to branch out in new directions, notably a very successful ad API.

Like Twitter, Instagram has recently clamped down on its public
API consumers, and has announced that it would now review apps
before letting them use the API in production. This follows from
the InstaAgent scandal in which an application was used to steal
user credentials.

http://nordicapis.com/developing-the-api-mindset-private-partner-and-public-apis/
http://mislav.net/2010/12/instagram-web/
http://nordicapis.com/instagram-api-and-the-transient-nature-of-public-social-apis/
http://websta.me/
https://flipboard.com/
https://www.casetify.com/
http://www.gramfeed.com/
http://collec.to/
http://collec.to/
http://www.socialprintstudio.com/
http://digiday.com/brands/instagram-ads-hit-among-brands/
http://developers.instagram.com/post/133424514006/instagram-platform-update
http://www.theverge.com/2015/11/11/9710884/instaagent-malware-removed-apple-google-instagram-app

Review

Throughout the course of this volume we’ve covered much ground.
As with much in life, the keys to success lie in planning; knowing
your developer consumer, and positioning your technology to meet
your platform goals. With great API power comes great responsi-
bility to your developers, so in this volume we also covered guide-
lines for crafting impressive developer portals, libraries, and other
helpful resources like code tutorials that will help spur adoption
and healthy developer relations. Usability is essential, but static
Q&A pages are sometimes not enough. That’s why quick developer
support paired with personable advocacy programs, events, and
demos can aid onboarding, and ignite a community of learned
practitioners. But don’t undersell the need to sell; take advantage
of our discovery techniques, press networks, and API directories to
promote your kit to the right channels. As stated in the Preface, API
Marketing needs it’s own strategy - now you have it.

TL;DR Checklist
In short, the DIY API Marketing process can be summed up in the
following steps:

1. Perform research to hone in on your target developer; this
will guide branding and help segment marketing.

2. Make your API discoverable through API directory profiling
and machine readable automation.

3. Write press announcements that describe feature releases and
disseminate them to our list of relevant developer networks.

4. Your developer center is both a knowledge center and im-
portant marketing facade; open functional understanding to
entrepreneurs as well as developers.

5. Create developer resources (SDKs, code libraries) to bring
your API into the hands of the many.

6. Consistently publish use cases, walkthroughs, code tutorials,
and thought pieces to gain traction online.

7. If possible employ evangelists, participate in events, spread
the word in person.

8. Use an active, but helpful forum presence to help users excel.
9. Build a community of API developer heroes.

TL;DR Checklist 181

More eBooks by Nordic
APIs:

The API Lifecycle: An agile process for managing the life of an API
- the secret sauce to help establish quality standards for all API and
microservice providers.

API-Driven DevOps: Learn about the API-driven approach to
uniting development and operations. This eBook combines all our
writing on DevOps, the firestorm that empowers and extends
capability for developers

The API Economy: Tune into case studies as we explore how agile
businesses are using APIs to disrupt industries and outperform
competitors.

Securing the API Stronghold: The most comprehensive freely avail-
able deep dive into the core tenants of modern web API security,
identity control, and access management.

Developing The API Mindset: Distinguishes Public, Private, and
Partner API business strategies with use cases from Nordic APIs
events.

Nordic APIs Conference
Talks

We travel throughout Scandinavia and beyond to host talks to
help businessess become more programmable. Be sure to track our
upcoming events if you are ever interested in attending or speaking,
or visit our YouTube channel to watch sessions from previous
events.

http://nordicapis.com/api-ebooks/the-api-lifecycle/
https://leanpub.com/api-driven-devops/
http://nordicapis.com/api-ebooks/the-api-economy/
http://nordicapis.com/api-ebooks/securing-the-api-stronghold/
http://nordicapis.com/api-ebooks/developing-the-api-mindset/
http://nordicapis.com/event-calendar/
https://www.youtube.com/user/nordicapis

Endnotes
Nordic APIs is an independent organization and this pub-
lication has not been authorized, sponsored, or otherwise
approved by any company mentioned in it. All trademarks,
servicemarks, registered trademarks, and registered service-
marks are the property of their respective owners.

Nordic APIs AB Box 133 447 24 Vargarda, Sweden

Facebook | Twitter | Linkedin | Google+ | YouTube

Blog | Home | Newsletter | Contact

http://facebook.com/nordicapis
http://twitter.com/nordicapis
https://www.linkedin.com/company/nordic-apis
https://plus.google.com/u/0/+Nordicapis/posts
https://www.youtube.com/user/nordicapis
http://nordicapis.com/blog/
http://nordicapis.com/
http://nordicapis.com/newsletter/
mailto:info@nordicapis.com

	Table of Contents
	Supported by Curity
	Preface
	Part One: Planning
	Building from the Ground Up: Tips for Starting Your API Program
	Clarify Your Needs
	Get Buy In (From Everyone)
	Aim for a Public MVP
	Act on Feedback
	Build your Practice
	Final Thoughts

	Define Your Target Developer Audience
	Why Create a Developer “Persona”?
	The Developer Brain
	But Plenty of Other People Are Interested in APIs, Too!
	Expanding our Portal: Developer End User Evangelism
	Varying Industry Backgrounds
	Location & Demographics
	API Use Cases
	Technology Preferences
	Lessen The Corporate Branding
	Developer Experience
	Build it And They Will _____
	Understand Your Audience

	Developer Experience is a Key Ingredient of Quality APIs
	API Model Canvas – offspring of Lean Canvas
	Developers are the Rockstars of the API Economy
	Addressing the Entire API Model Canvas
	Case Study: National Library of Finland
	MVP for next step
	Gain speed and make it fun
	Final Thoughts

	Part Two: Developer Relations
	Ingredients That Make Up a Superb Developer Center
	Getting Started Guide
	Authentication Guide
	API Documentation
	Testing Environment
	Developer Resources
	Support Channels
	Platform Policy
	Cater Your Home Presence to Non-Developers Too
	Final Thoughts

	Crafting Excellent API Code Tutorials that Decrease On-boarding Time
	Setting the Context
	Exploring the Details
	Creating an Application
	Final Thoughts

	What is the Difference Between an API and an SDK?
	Define: API
	Define: SDK
	Squares and Rectangles
	Examples
	Apples and Oranges

	Developer Resources: SDKs, Libraries, Auto Generation Tools
	What Are Helper Libraries?
	Why Not Just Let Them REST?
	Data Problem
	Programming Language Trends
	Discover What Languages Your Consumers are Using
	Who Should we Model?
	HTTP is Language Agnostic
	5 Tips for Helper Library Design
	Last Line of API Code: Your API is Never Really Finished

	A Human's Guide to Drafting API Platform Policy
	Key Themes
	Defining Responsibilities
	Setting Expectations
	Describing Good Behaviors
	Final Thoughts

	Creating A Brand Guide for Your API Program
	Platform Strategy Dictates Brand Requirements
	Brand Guide Components
	Formatting Your Design Guide
	The Effect of Zero or Poor Branding Guidelines
	Final Thoughts
	Examples of API Branding Guides in the Wild:

	Part Three: Promotion
	Perfecting Your API Release
	What do I release?
	Time Your Release
	Widen Your Potential Audience
	Have the Right Monetization plan
	Have a Demo
	Have Awesome Branding

	Tips to Make Your API More Discoverable
	SEO Approach: Optimization of API Homepages
	Service Discovery Automation

	Cheat Sheet of 10+ API Directories to Submit Your API to
	Important Press Networks and Developer Channels in the API Space
	Press Release Distribution
	API-Specific Blogs, Thought Leaders, and Digests
	General Tech & Developer News
	Nordic Tech Press/News
	Social Bookmarking
	API Events
	The Everpresent Commentator

	Utilizing Product Hunt to Launch Your API
	Alpha, Closed Beta, Open Beta, or Full Release?
	Preparing for a Release
	Offering Exclusive Deals: The Gold Star
	Actually Submitting a Profile on Product Hunt
	The Launch: Introduce Yourself, Play Nice, Get the Word Out
	The Unanticipated Launch
	The Return on Investment
	The Internet's Watercooler is Product Hunt
	Resources

	Part Four: Advocacy
	Day in the Life of an API Developer Evangelist
	8 Important Job Roles of a Software Evangelist
	What does an Evangelist do each day?
	Evangelism vs Advocacy
	Q&A Section
	Conclusion
	Interviewees:

	How to Offer Unparalleled Developer Support
	The Importance of Developer Outreach
	Email and Social Media
	Event Hosting and Attendance
	Documentation and Knowledge Bases
	Conclusion

	Accumulating Feedback: 4 Questions API Providers Need to Ask Their Users
	Why Feedback is Important
	What Do You Expect From This API?
	What Is Your Greatest Frustration with the API?
	Why Did You Choose Our API?
	If You Could Change Our API, How Would You?
	Methods to Use for Accumulating Feedback
	Think As a User

	How to Hold a Killer First Hackathon or Developer Conference
	Types of Get-Togethers
	What is a Hackathon?
	What is a Developer Conference?
	What’s the Difference?
	How to Host an Event

	What Makes an API Demo Unforgettable?
	1: Describe the API, in a few words.
	2: Convince we all share the same values of the API
	3: Impress with how great and easy your API is
	4: Interact with the audience
	5: Live coding mastery
	6: A theater-like script
	Preparation for potential technical flaws
	Conclusion

	Case Study: Twitter’s 10 Year Struggle with Developer Relations
	2006 - 2010: The early days
	2010 - 2012: OAuthcalypse, competing with third party apps and other perceived betrayals
	2012 - 2013: Token limits and open war on traditional clients
	2013 - Present: Post-IPO controversies
	Wooing back developers
	New releases and optimism going forward
	Other social networks

	Review
	TL;DR Checklist

	Endnotes

