

Developer Experience
Top strategies to improve the
developer experience of your API

Nordic APIs

© 2022 Nordic APIs

Contents

Supported by Curity . i

Preface: What Is Developer Experience? 1
Developer-Facing Tools 2
Considering The Developer Journey 2
What To Expect in our eBook, Developer Experience . . 3
Enjoy Developer Experience! 4

API Onboarding Is Broken (And How To Fix It) 5
Show, Don’t Tell, (With Code Samples) 6
Support vs. Peer Support 7
The Documentation Paradox 8
Measure & Iterate . 9
API Onboarding: Final Thoughts 10

Everything You Need To Know About API Discovery . . 11
Guide To API Discovery 12
Types Of API Discovery 13
Tips For API Discovery 14
API Discovery: Final Thoughts 16

5 Ways to Make Your API More Self-Service 17
1. Decrease Time To First Call (TTFC) 18
2. Provide A Sandbox For Testing 18
3. Instant Account/API Key Issuance 19
4. Engage With Marketplaces 20
5. Comprehensive, Easily Navigable Documentation . . 20

CONTENTS

Self-Service APIs: Final Thoughts 21

Best Practices For Creating Useful API Documentation . 22
Understanding The Audience For API Documentation . 23
The Essential Components Of API Documentation . . . 24
Best Practices For API Documentation 28
Best Practices For API Documentation: Final Thoughts . 31

7 Best Practices for API Sandboxes 33
What Is an API Sandbox? 34
Seven Short ‘n’ Sweet Suggestions for Sandbox Success . 35
API Sandboxes: Final Thoughts 38

What Does a Bad Developer Experience Look Like? . . . 39
8 Developer Experience Anti-Patterns to Avoid 40
Bad Developer Experience: Final Thoughts 44

Why Time To First Call Is A Vital API Metric 45
A Deeper Dive Into TTFC 46
From Time To First Call to Active User 47
Exploring “First Call Motivators” 48
Improving Your Time To First Call 48
Time To First Call: Final Thoughts 50

Developer Marketing for API Companies 51
Are You Developer-Focused or Developer-Enabled? . . . 52
Find the Real Competitor to Your API 53
Help Developers Solve Their Problems 54
Developer Marketing: Final Thoughts 56

Why Your API Needs a Dedicated Developer Experience
Team . 57
Understanding the Difference: DevRel and DX 58
Why Developer Experience? 58
Why the Shift? . 59
You Need a Dedicated Developer Experience Team . . . 60

CONTENTS

4 Main Responsibilities of a Developer Experience Team 62
DX Team: Final Thoughts 64

Tips on Creating Outstanding Developer Experiences . . 65
DX For Onboarding . 66
DX For Developer Dashboards 67
DX For Developer Advocates 68
DX For Developer Communities 69
DX Time and Task Management 70
KPIs to Improve DX . 70
Building Outstanding DX: Final Thoughts 72

How To Find An Audience For Your API? 74
What Does Your API Do? 75
Carry Targeted Messaging Throughout 76
Where to Find Your Audience? 76
Is Your Organization as Invested as You Are? 77
Finding An Audience: Final Thoughts 78

Pointers for Building Developer-Friendly API Products . 79
1. Know Your Developers 80
2. Be Obsessive about Naming 81
3. Always Stick to Your Process 81
4. Build a Complete Ecosystem 82
5. Think API Governance 82
Developer-Friendly API Products: Final Thoughts 83

9 Areas of Consistency for Great Developer Experience . 84
1. Naming and Endpoint Consistency 85
2. API Design Paradigm 87
3. Error Handling . 88
4. Documentation . 89
5. Support and Feedback 90
6. Change and Versioning 91
7. Security . 92
8. Authentication and Authorization 93

CONTENTS

9. Platform Consistency 94
Be Consistent: Final Thoughts 95

Nordic APIs Resources . 96

CONTENTS i

Supported by Curity

Nordic APIs was founded by Curity CEO Travis Spencer and has
continued to be supported by the company. Curity helps Nordic
APIs organize two strategic annual events, the Austin API Summit
in Texas and the Platform Summit in Stockholm.

Curity is a leading provider of API-driven identity management
that simplifies complexity and secures digital services for large
global enterprises. The Curity Identity Server is highly scalable, and
handles the complexities of the leading identity standards, making
them easier to use, customize, and deploy.

Through proven experience, IAM and API expertise, Curity builds
innovative solutions that provide secure authentication across
multiple digital services. Curity is trusted by large organizations
in many highly regulated industries, including financial services,
healthcare, telecom, retail, gaming, energy, and government
services across many countries.

Check out Curity’s library of learning resources on a variety of
topics, like API Security, OAuth, and Financial-grade APIs.

Follow us on Twitter and LinkedIn, and find out more on curity.io.

https://curity.io/?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity
https://curity.io/resources/api-security/?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity
https://curity.io/resources/oauth?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity
https://curity.io/resources/financial-grade?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity
https://twitter.com/curityio
https://www.linkedin.com/company/25049399/admin/
https://curity.io/?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity

Preface: What Is
Developer Experience?

by Bill Doerrfeld

Developer experience, sometimes abbreviated as DevX or DX, is
similar to user experience (UX) but focuses on the experience
developers have while using a software tool. A tool’s DX is a
benchmark for how usable or intuitive the service is. And whereas
DX used to be viewed as an afterthought, it’s now becoming more
of a necessity to stay relevant in today’s digital economy.

What sets DX apart from UX is the frame of interaction. DX
goes beyond the standard graphical user interface to consider the
holistic developer journey across all interaction points, whether
it’s the reference documentation, command line, SDKs, libraries,
API endpoints, or sandboxes. Generally, a service with quality
developer experience is well-documented and comes with a solid
getting started guide and sample code for common executions.

Preface: What Is Developer Experience? 2

Naturally, software tools have varying degrees of developer ex-
perience. For example, if one method or parameter is not fully
documented, an engineer might have to expend wasteful energy
to guess how to interact with it. Or, incompatibilities between the
reference and production behavior can cause frustration, leading to
unhappy consumers.

Developer-Facing Tools

Developer experience can encompass various developer-facing
tools, such as web APIs, cloud-based platforms, or open-source
projects. Some of these developer-facing tools and products
include:

• Software Developer Kits (SDKs) and code libraries
• Application Programming Interfaces (APIs)
• Open-source code repositories
• Code libraries, sample code, or tutorials
• Software-as-a-Service (SaaS)
• Platform-as-a-Service (PaaS)
• Infrastructure-as-a-Service (IaaS) and CloudOps
• Specifications and open standards

It’s not just public SaaS that can benefit from DX — it’s in a
company’s best interest to ensure their internal tools have quality
developer experience too. Investing in DX can increase developer
satisfaction and reduce burnout, improving employee retention.

Considering The Developer Journey

If we consider the entire developer journey throughout these tools,
there are many areas in which the experience could be positive or
negative.

Preface: What Is Developer Experience? 3

To begin with, how easy is it to find the service? Developers may
come across it through word of mouth or a simple keyword search
and command-line install. Or, they may discover it through curated
lists and registries. This is known as discovery.

Next, the onboarding phase could introduce friction or create a
seamless experience, depending on the quality of documentation
and reference materials. Are there code tutorials or sample apps for
the most common use cases? How quickly can users get to their
first Hello World? (For APIs, this is commonly known as Time To
First Call (TTFC)).

Then comes the actual testing and production behavior. Does the
tool behave as intended? Is it reliable? How easy is it to maintain,
andwhat is ongoing support like?Many non-functional operational
aspects could affect DX, such as rate-limiting, the developer dash-
board experience, or costs.

What To Expect in our eBook,
Developer Experience

In our eBook Developer Experience, we’ve collected our top-
performing articles on developer experience from the past couple
of years. The Nordic APIs writing team has shared countless
insights on what it takes to create usable software that developers
love and that makes them productive.

First, we’ll look into improving the initial discovery and onboarding
process to avoid leaky funnels that drop potential consumers. Then,
we’ll investigate how to enhance knowledge sharing with stellar
documentation and helpful sandboxes. We’ll cover techniques to
measure the success of your developer journey and iterate it over
time. Lastly, we’ve included many ways to retain consistency
throughout a suite of APIs.

Preface: What Is Developer Experience? 4

Popular public APIs continue to set the bar for developer experience
expectations. And although the particular focus of this eBook will
be on API user experience, these tenants could certainly be applied
to improve the developer experience of many other flavors of
software services.

Enjoy Developer Experience!

I truly hope this volume helps your journey to create more usable
developer-facing tools. And if you like what you read, consider
following Nordic APIs or signing up for our bi-weekly Newsletter
on API design and strategy. Our blog is also open to submissions
from the community if you would like to share your insights with
a broader audience.

https://nordicapis.com/newsletter/
https://nordicapis.com/create-with-us/

API Onboarding Is
Broken (And How To Fix

It)
by Art Anthony

Leaky funnels are often the result of poor developer experiences.

Even the best APIs in the world have leaky funnels. Potential users
get as far as signing up, maybe even completing that action, only
to abandon the process entirely. In some cases, the reasons for this
are unavoidable. The product might be too expensive, for example.

In other cases, something happens between signing up and actively
using an API. Examining how far people get in the sign-up process
might help identify why they drop off.

In this article, we’ll be looking at some of the reasons a potential
user might give up on an API before they start using it. We’ll also

API Onboarding Is Broken (And How To Fix It) 6

be looking at tried and tested ways, along with some emerging
solutions, on how to reduce API abandonment.

Show, Don’t Tell, (With Code
Samples)

Geoffrey Moore’s Crossing The Chasm is a book on tech marketing
published back in 1991. You’ve likely seen the book’s signature
chart, a bell curve that visually outlines the pattern of innovators,
early adopters, the majority, and laggards in tech adoption.

Applying this to APIs, writer JarkkoMoilanen suggests that the API
chasm— dividing early adopters from the early majority — is three
minutes wide.

To maximize engagement early on, he theorizes that potential
developers should be able to test APIs using code examples within
just 180 seconds of engaging with the product. While that may be
overstating the importance of copy-paste code samples, his thesis
is interesting.

The idea that code samples are as important as, although maybe

https://medium.com/@kyyberi/you-have-3-minutes-to-cross-the-chasm-and-get-paying-customers-to-your-api-d4b15fdd9d59

API Onboarding Is Broken (And How To Fix It) 7

not more important than, documentation is one that it’s difficult to
disagree with. In an analogy, it’s unlikely that you’d buy a digital
camera after looking at its instruction manual without seeing some
pictures taken using it or holding the camera in your own hands.

On the idea of “holding the camera”, providing a sandbox is a
great idea if you can provide one. If not, consider a free trial or
a freemium model.

Creators of paid APIs might balk at the idea of giving away calls
for free, but maybe they shouldn’t — giving developers free rein to
explore an API before committing to a purchase is part of a good
onboarding process.

If a small number of monthly calls is enough to fulfill their
requirements, theywould probably never sign up for a paid account
anyway. At least, in this model, they remain active and might
upgrade if their needs for your service scale up.

Support vs. Peer Support

Chris Chandler, founder of sudoHERO, suggests that “unlike other
groups of customers…developers actually prefer to find answers by
reading through information which might be of use to solve their
problem before engaging a support rep.” A small-scale study from
2017 suggests the average developer performs 16 searches a day to
do their job, with one major search category being “Understanding
an API.”

That’s not (just) because developers don’t like to admit defeat when
they’re facing a problem. Chandler continues that “to accurately
diagnose a problem, countless variables need to be communicated
in order to replicate the issue and provide a reasonable reply.”

When submitting a support request, some of that important context
is often missing. The result? “After waiting hours, or even days,

https://nordicapis.com/7-best-practices-for-api-sandboxes/
https://nordicapis.com/how-to-grow-and-profit-using-a-freemium-api-monetization-model/
https://sudohero.com/
https://bootcamp.uxdesign.cc/the-hidden-insights-in-developers-google-searches-47f05030cd2d

API Onboarding Is Broken (And How To Fix It) 8

for a response, initial support tickets may be responded to with
a request for clarification on some part of the question. Once
provided, the message goes back into the queue and the developer
waits…Again.”

In other words, offering 24/7 support might not be quite the selling
point you think it is.

Peer support, which feels more like brainstorming with fellow
developers than submitting a support ticket, can be a compelling
addition to the onboarding process because it gives potential users
a sense of what those already using the product are doing.

This is something that Miro does well, with an appealing UI
somewhere between Hacker News and a ’90s forum. Note that
Miro’s Developer Relations Lead regularly jumps in to help people
out; this helps the support site feel more like an active community,
full of searchable Q&As rather than people shouting into the void.

This is a very different ballgame than searching for an issue with
your MacBook or iPhone on Apple’s Support Community and
finding hundreds of other people with the same problem… but no
one with a solution.

The Documentation Paradox

Brian Helmig, Zapier’s CTO, said the following in conversation
with Codementor: “information should dispense automatically by
design, when it’s needed.”

We’ve written time and time again about the value of great docu-
mentation, but there’s a type of conflict implicit in doing this suc-
cessfully: the best API documentation should be digestible enough
that it doesn’t overwhelm, but should also include everything (or
close to it) a developer could ever need to know. Those ideas stand
at odds with each other.

https://community.miro.com/developer-platform-apis-82
https://www.codementor.io/blog/developer-onboarding-process-32y3zqg1vc
https://nordicapis.com/best-practices-for-creating-useful-api-documentation/
https://nordicapis.com/best-practices-for-creating-useful-api-documentation/

API Onboarding Is Broken (And How To Fix It) 9

Using automation, Chandler is trying to solve this problem with
sudoHERO’s Contextual Support tool. He suggests that “when
working on troubleshooting an issue, the developer typically goes
back to the documentation first to review the syntax and confirm
their understanding of how a command or function should be
used. If an answer isn’t found there, they’ll then look elsewhere
for additional information.”

Clearly, that’s not ideal for API developers who would rather keep
consumers in “their world”. To combat this drift, the company
offers a tool to embed knowledge base articles and relevant insights
from other developers directly into their documentation.

We’ve already seen companies like Yext looking to shake up search
for consumers using AI, but the idea of “going beyond search” has
some really intriguing possibilities in the context of the API space.

Based on feedback over time, the product gets better at delivering
the best available answer to developers. In turn, tools like these
can identify which parts of their documentation generate the most
queries and can use that information to clarify it.

Measure & Iterate

Cultivating an engaging developer experience is not a “one and
done” process. When you first create your developer portal and
documentation, there’s a significant amount of guesswork involved.
But, as time goes by, you may want to refine this process.

Finding a way to track the behavior of users, and potential users,
in your API portal is a great way to identify bottlenecks and areas
of interest. When you know what those are, you can address and
accentuate them respectively.

Pronovix’s Zero Gravity developer portals are an example of such
a documentation experience, prioritizing iteration and an engaging
editorial experience for authors/editors.

https://www.yext.com/
https://pronovix.com/developer-portals

API Onboarding Is Broken (And How To Fix It) 10

There’s (much) more to creating compelling documentation than
just using an OpenAPI spec and Swagger tools, some of which
can be used to generate multiple documentation versions from
OpenAPI specs, but it remains a good starting point.

API Onboarding: Final Thoughts

In our article on the importance of Time To First Call (TTFC) as
an API metric, we talked about aiming to remove roadblocks in the
process of signing up and getting started with a product. Above,
we’ve outlined a few key ways to do that:

• Code samples to give people an idea of how to use the API
• Extensive documentation once they’re ready to jump in them-
selves

• Going beyond traditional support by building communities
and better context

• Iterating on the processes above based on feedback and
analysis of user behavior

The title of this post states that API onboarding is broken. That’s
not always entirely true, but API onboarding often does lag behind
some of the well-established funnels that exist in the SaaS space.
And, with APIs now being respected more as freestanding products,
there’s no excuse for that.

Fortunately, it appears that tools and systems are on the way (or
here already) to help API developers take their onboarding to the
next level.

https://nordicapis.com/your-guide-to-openapi/
https://nordicapis.com/why-time-to-first-call-is-a-vital-api-metric/

Everything You Need To
Know About API

Discovery
by J Simpson

Focusing on “discovery” is a first step to getting your API noticed
and increasing use.

Did you know that there are over 24,000 APIs listed on Pro-
grammableWeb alone? There were around 19 million developers
working with APIs in 2020, as well.

The API industry is exploding, and it will only grow more pro-
nounced as the years go on. Business owners and developers realize
there’s money to be had in developing APIs. This is leading to a
virtual Gold Rush as developers raise to capture the hearts, minds,
and wallets of their audience.

https://thenewstack.io/the-state-of-apis-in-2021/
https://nordicapis.com/apis-have-taken-over-software-development/

Everything You Need To Know About API Discovery 12

This leads to the question — how can you stand out in such a
crowded marketplace? What makes your API different from the
rest in the API directory? And if you’re a programmer, how are
you supposed to find the right API for your specific needs?

API discovery.

The ability to be found is one thing that determines if an API soars
or sinks like a stone. This means that API discovery is vital for your
API’s success.

We’ve put together a thorough guide to API discovery to help you
learn how to make your API stand out, get found, adopted, and
spread!

Guide To API Discovery

API discovery is a bit more complicated than simply creating a
landing page for your API and letting SEO take care of everything,
although that’s certainly part of it. It also ensures that your devel-
opment process is as efficient as possible as you’re less likely to end
up doing unnecessary work.

APIs tend to come in two forms — internal and external. As far as
internal APIs are concerned, API discovery makes it so that your
team can find existing APIs for a particular application. It can also
give you an idea of new features to add to your API to make it even
more useful.

For external APIs, API discovery is how others find your API. Even
more importantly, it helps your users know how to use your API
once they’ve found it.

API discovery is also an essential part of API lifecycle management,
as it helps your development team find the right API assets for their
projects and helps to make sure they’re maintained and secured.

https://nordicapis.com/api-discovery-15-ways-to-find-apis/
https://nordicapis.com/tips-for-internal-api-first-approaches/
https://nordicapis.com/how-apis-improve-end-user-experiences/
https://nordicapis.com/api-discovery-the-keys-to-the-castle/

Everything You Need To Know About API Discovery 13

Types Of API Discovery

API discovery also comes in two major types — manual and
automated. Naturally, automation is important if you have any
hopes of your API discovery being scalable. You simply wouldn’t
have time to document every single feature for every one of your
API assets.

Automated API discovery functions similarly to an API specifica-
tion. This standardized format achieves several goals at the same
time. First, it has many of the same benefits of an API specification
— it’s easy to automate and scale to whatever size you need.
More importantly, this same specification lets others find your API
without creating more work as yet another benefit.

The existence of standardized API discovery also means that there
are useful and powerful tools for API discovery. These tools can
often perform additional functions simultaneously, so it’s even
possible to add an API discovery tool without having a whole,
separate solution.

As the API industry continues to develop and flourish, there are
efforts to make API discovery more standardized. For example,
APIs.json standardizes API discovery in a way similar to how
OpenAPI standardizes an API’s description.

This standardization allows for simple-but-essential tools, like a
spec-driven API search engine. For example, APIS.io, which uses
APIs.json, is an API search engine that pulls APIs from awide array
of different sources, all of which are tagged in a variety of useful
ways.

API specifications end up having a similar end result, acting as
API discovery tools in their own right. There are search engines
for Swagger and web APIs. Postman even created their own API
network formatted for Postman.

https://smartbear.com/product/ready-api/features/platform-features/discovery/
https://www.cloudvector.com/api-shark/
https://nordicapis.com/recent-fundraising-proves-business-value-of-api-economy/
http://apisjson.org/
https://nordicapis.com/how-to-write-your-first-openapi-specification/
http://apis.io/
https://nordicapis.com/whats-the-difference-between-swagger-and-openapi/
https://nordicapis.com/whats-the-difference-between-swagger-and-openapi/
https://apis.guru/
https://www.postman.com/explore
https://www.postman.com/explore

Everything You Need To Know About API Discovery 14

Tips For API Discovery

As we stated at the top, API discovery is integral for anyone
working with APIs. For API developers, it’s the key to getting
your API found and used. This means discovery is key to realizing
your API’s goals, whether that’s monetization or increasing your
company profile.

With that in mind, here are some more tips to make API discovery
as effective as possible for you and your company.

Document Properly

At its heart, the key to API discovery’s success is essentially the
same as successful API documentation. The two can even some-
times be handled at the same time.

You can even think of API discovery and documentation as part
of the same process. API discovery will help users find your API.
Proper documentation will show them how to use it once its been
found.

Make Sure It’s Machine Readable

One of the reasons API discovery is so powerful is due to machine
readability. While it’s important to have clear, understandable
language for human comprehension, the ability for a computer to
decipher what your API is about may be even more important to
your API’s success.

If you’re serious about your API’s success and think you’ll be
managing a larger suite of APIs in the near future, you’d be advised
to look into one of the emerging specifications in this area.

https://nordicapis.com/7-open-source-openapi-documentation-generators/
https://nordicapis.com/best-practices-for-creating-useful-api-documentation/

Everything You Need To Know About API Discovery 15

List Your API With API Directories

Even though automated API discovery tools are becoming more
common, you simply can’t overlook API directories if you want
your API to succeed. Sites like RapidAPI and ProgrammableWeb
can help generate traffic for your service. You simply can’t afford
to miss out on that potential audience!

Of course, ProgrammableWeb and RapidAPI aren’t the only API
directories in the game. Public-APIs is a GitHub repository with
thousands of free APIs organized by topic. If you’ve got an open-
source or free API that you’d like listed on Public-APIs, or if your
API has a free tier, you can read their submission guidelines here.

APIslist.fun is another API directory with a clean, easy-to-navigate
interface that’s worth bookmarking. While it’s not as extensive as
Public-APIs either, it’s still worth a look. You can add APIs to their
directory, too.

API directories can be helpful in other ways, as well. Consider some
other listings on the directories to learn what information needs to
be included in your API description.

Incorporate SEO

One of the advantages of API discovery is removing unnecessary
tasks and redundancy in your API workflow. We’ve already talked
a great deal about the usefulness of API directories and discovery
tools. However, many developers will be looking for your API using
a good old-fashioned Google search.

If you work SEO keywords and phrases into your API discovery
documentation, this will help to capture the search engine traffic.
It could even add some SEO clout to your API, as the API directories
can serve as inbound links to your other web assets.

https://github.com/public-apis/public-apis
https://github.com/public-apis/public-apis/blob/master/CONTRIBUTING.md
https://apilist.fun/
https://apilist.fun/new

Everything You Need To Know About API Discovery 16

API Discovery: Final Thoughts

The API industry isn’t going to become less competitive. As we’ve
seen, 7,000 new APIs were launched in a single year. How many
will the next year bring? What about the year after that?

Things like API specifications have been integral in the industry’s
rapid acceleration and adoption. And, API discovery will likely
play a similar role. After all, it’s truly good for all parties involved.
Programmers can find APIs to work with, and API developers get
a much wider audience. It’s a win-win for all involved.

5 Ways to Make Your API
More Self-Service

by Art Anthony

Making your tool more self-service can improve efficiency and
reduce one-on-one support.

In 2019, TechCrunchwrote that APIs were “the next big SaaS wave.”
Years later, it’s looking more and more like author Daniel Levine
was right on the money.

Twilio and Stripe are still prominent examples of what you might
call “API companies,” but there are plenty of other examples of
API-first companies out there: Square, Shopify, Algolia, Zapier, and
others. In fact, in a recent Forbes article, Iddo Gino (founder and
CEO of RapidAPI) asserts that “almost every company is now an
API company.”

This is exciting news for those in the space, but might also bring

https://techcrunch.com/2019/09/06/apis-are-the-next-big-saas-wave/
https://nordicapis.com/api-first-companies-the-next-generation/
https://www.forbes.com/sites/forbestechcouncil/2021/09/16/why-almost-every-company-is-now-an-api-company/

5 Ways to Make Your API More Self-Service 18

trepidation for some — just because a company has been building
APIs for a while doesn’t mean that they know how to market
them as products. One big part of designing an API as a product
is to make it as self-service as possible. With that in mind, we put
together some thoughts on doing just that.

1. Decrease Time To First Call (TTFC)

Time To First Call is a vital API metric to track, and there are
various measures you can take to improve it. Many of these tactics
overlap with other suggestions in this article, such as providing
sandboxes and using external tools.

With a traditional product unrelated to APIs, generating revenue
is all about moving people through the sales funnel: someone visits
the website, the product piques their interest, they sign up for a free
trial or make a purchase.

The specifics might differ for API-based products, but the process
is similar. Remove as many barriers to entry as possible to make it
easy for potential users to make their first API call. In other words,
lower the TTFC.

2. Provide A Sandbox For Testing

In a nutshell, an API sandbox is a test environment that emulates
a production API. They allow API consumers to test their integra-
tions, just like a staging area in web development, reducing the risk
of errors when they deploy to production for real. That also reduces
strain on your actual API.

Sandboxes are extremely valuable for paid APIs because they
offer potential customers the chance to try before they buy. This
could dictate whether or not they take the plunge and purchase.

5 Ways to Make Your API More Self-Service 19

Sandboxes also help developers learn how to use the service — this
is great for folks who prefer to learn through practice. For these
reasons, you should keep things as close to the real thing as possible;
a sluggish sandbox, for example, might deter some folks.

Maintaining a sandbox indeed has costs associatedwith it, although
you can grab a free trial from a service like Sandbox. However,
those costs could ultimately be an investment in your product.
For example, sandbox logs might help you identify pain points or
potential areas for growth.

3. Instant Account/API Key Issuance

In some cases, it isn’t possible to allow users to create an account
themselves. That might be due to sensitive data, or it might be
that you need to figure out the volume of data involved with that
customer. But having to wait for manual approval will inherently
make your API less self-service.

If you can, we recommend making the whole process as open as
possible: allow people to generate an API key, let them use OAuth2
for authorization, and let them dive in headfirst. In other words, try
to get out of their way.

Of course, there will be things you need to think about with a paid
or freemium product. For example, you’ll need to look into rate
limiting if you plan to offer multiple pricing tiers. In addition to
warning users when they’re approaching their upper limit, consider
how you can transition them as they exceed that number of calls
with minimal disruption.

5 Ways to Make Your API More Self-Service 20

4. Engage With Marketplaces

Although it won’t be the correct route for every product, it’s worth
looking into marketplaces that can expose your offering(s) to a
wider audience. There are, for example, developers who make a
living selling apps on the Shopify App Store using APIs.

As of late 2021, RapidAPI currently plays host to more than 30,000
APIs. That’s pretty close to the number of APIs, just under 25,000,
in ProgrammableWeb’s API directory. Their API acceptance rate
isn’t published, but these numbers are high enough that it certainly
doesn’t seem like they’re trying to find reasons to turn submissions
down.

It’s possible to submit an API to RapidAPI manually and, if you’re
using a specification — more on that below — the process is fairly
simple: you can specify it using UI, OpenAPI, Postman Collection,
GraphQL Schema, or Kafka as appropriate.

You can add an API to ProgrammableWeb, too, although it’s worth
noting that ProgrammableWeb doesn’t facilitate connections in the
same way that RapidAPI does.

5. Comprehensive, Easily Navigable
Documentation

Lastly, easy-to-understand documentation is a must for a truly self-
service API. The lines between an API specification and documen-
tation are blurry, and something we’ve written about previously.

However, it’s generally the case that using something like an Ope-
nAPI Specification goes hand in handwith rigorous documentation.
You can even use Swagger UI to automatically generate visual
documentation from a spec.

5 Ways to Make Your API More Self-Service 21

Beyond that, looking at examples of excellent API documentation
is a good way to figure out what to include. Just remember, in
many cases, your documentation is the first impression you make
on potential customers. So make it a good one!

Self-Service APIs: Final Thoughts

The strategies listed above aren’t rocket science. In fact, they’re
things that many API-first companies are already doing. However,
it might not immediately be readily apparent to newcomers why
these tactics are necessary. Hopefully, if you’ve read this far, that
picture will be clearer now.

Marketing an API-centric SaaS has a lot in commonwithmarketing
other SaaS products, or any other product for that matter, but there
are nuances associated with it. Considering these nuances, and
increasing your service’s usability, is the best way to maximize the
chances your API has of being successful. Making your API more
self-service is also a surefire way to decrease one-on-one customer
support, thus reducing cost!

Best Practices For
Creating Useful API
Documentation

by J Simpson

Quality documentation requires forethought to appease developer
consumers.

API documentation is the key to a useful, usable API. An API could
be all-powerful, versatile, and entirely useful, yet it won’t matter
one bit if users can’t figure out how to make it work. Creating
proper API documentation is an artform in-and-of-itself. However,
not all coders are good writers, just like not every author is an ex-
cellent programmer. Creating useful, informative, understandable
API documentation is a skill set all its own.

To help make your APIs more useful, we’re going to share some
best practices for API documentation. We’ll start by examining

https://nordicapis.com/5-examples-of-excellent-api-documentation/

Best Practices For Creating Useful API Documentation 23

the essential components that every API documentation needs to
contain. Then we’ll take a look at some API documentation best
practices.

Understanding The Audience For API
Documentation

Writers are frequently told to “know your audience.” Who you’re
writing for will influence your writing in a variety of ways, from
tone to word choice. This is every bit as true for developers creating
API documentation.

Very generally speaking, the consumers of API documentation fall
into twomain categories. There are the decision-makerswho decide
which APIs to use. Then there are the programmers who will be
using the APIs. This means that API documentation needs to fulfill
two main functions, simultaneously.

When crafting API documentation, consider: who is the target
developer consumer?

You first must illustrate the usefulness of an API to convince the

https://nordicapis.com/7-items-no-api-documentation-can-live-without/

Best Practices For Creating Useful API Documentation 24

decision-makers. Think about the spec sheet for a product as an
example.

The developers who will be using your API are the primary au-
dience you should keep in mind, however. They’ll need detailed,
thorough guidelines. This means explaining all of the functions
with code samples.

Now that you understand your audience, you should be starting to
get an idea of a basic template for creating useful API documenta-
tion. Keeping API documentation best practices in mind as you’re
developing your API will help keep you in the habit of making notes
as you go, helping to compile your API documentation once you’re
finished coding.

The Essential Components Of API
Documentation

While every API is different, most have some basic building blocks
that nearly every API incorporates. Your API documentation
should include documentation for these functions, as they’re some
of the first things developers will look for when they start to use
your API.

Authentication

Authentication is one of the first things a user encounters when
using an API. Think of authentication as a key that will unlock
your API for your users. Almost every API features some sort of
authentication schema, and nearly every one is different.

To start, your API documentation needs to let users know how to
access your API. You can take a look atAuth0’s authentication docu-
mentation for an example of what thorough, concise authentication
documentation looks like.

https://nordicapis.com/3-common-methods-api-authentication-explained/
https://auth0.com/docs/api/authentication
https://auth0.com/docs/api/authentication

Best Practices For Creating Useful API Documentation 25

API Resources

Users need to knowwhat your API can do. List every endpoint with
standard commands and responses. Listing all of the commands and
responses helps you think like your end-users and create thorough,
understandable documentation for each response. Think of it like
diagramming your program and then creating documentation for
each step.

For example, check out the API documentation for WordPress.
WordPress offers a complete and thorough list of all available API
endpoints. Each command has its own page, with comprehensive
documentation of all of its context, queries, and error codes. Each
page has example code, as well, to offer some guidance on how to
get started with that particular feature.

WordPress organizes API documentation with a separate page for
each function.

In all, this provides a detailed understanding of the API structure.
As you can see, there are over 20 resources for retrieving or
modifying user info alone. For complex API documentation like

https://developer.wordpress.com/docs/api/
https://developer.wordpress.com/docs/api/1.1/get/me/

Best Practices For Creating Useful API Documentation 26

this, organization and navigability are key.

WordPress’s API documentation is also an excellent example of
usability. Each function features a tag letting you know what
HTTP method the command requires, whether ‘GET’ or ‘POST.’
This saves you from having to read each page to have a basic
understanding of how to use each API resource.

Also consider: 10+ Best Practices for Naming API Endpoints

Error Messages

Debugging is likely to be one of the main reasons people consult
API documentation. You’ll want to have a thorough section explain-
ing all of the error messages your API returns. This will make your
API more usable for your users, helping them to avoid frustration
and have good feelings towards your API.

Don’t limit your API documentation to listing the error messages,
either. Include an example or two of how to fix common problems.
Check out Mailchimp’s API documentation for an example of
thorough, useful error documentation.

From 400 Bad Request to 500 InternalServerError, Mailchimp’s
Error Glossary details global errors for the Mailchimp API.

https://nordicapis.com/10-best-practices-for-naming-api-endpoints/
https://nordicapis.com/best-practices-api-error-handling/
https://developer.mailchimp.com/documentation/mailchimp/guides/error-glossary/
https://mailchimp.com/developer/guides/error-glossary/#503
https://mailchimp.com/developer/guides/error-glossary/#503

Best Practices For Creating Useful API Documentation 27

Terms Of Use

Terms of Use are the legal agreement between you and your users.
In the Terms of Use section of your API documentation, you
should include API limits, constraints, branding guidelines, and
what usage is acceptable.

Check out Spotify’s Terms of Service as a model.

Changelog

The Changelog section of your API documentation lets your users
know how stable your API is. It also lets them know if anything’s
changed, in the instance that one of their calls stops working. You
can take a look at GitHub’s changelog for an example of thorough
changelog documentation.

https://developer.spotify.com/terms/#iii
https://developer.spotify.com/terms/#iii
https://developer.github.com/changes/

Best Practices For Creating Useful API Documentation 28

Github’s Developer Changelog provides updates on general avail-
ability, deprecations, and downtime for various services.

Best Practices For API
Documentation

Now that we’ve taken a look at some of the essential components
API documentation should have to be ultimately useful, let’s con-
sider some best practices to make your documentation really shine
for developers and decision-makers alike.

Avoid Jargon

Remember, you have very little control over who’s going to be
consuming your API. There will be users of all different experience
levels using your API and reading your API documentation. You
want advanced and inexperienced users alike to be able to find both
your API and its documentation useful and welcoming.

https://developer.github.com/changes/
https://developer.github.com/changes/

Best Practices For Creating Useful API Documentation 29

Excessive jargon is a pitfall that developers may fall into, and it
has many drawbacks. First, financial decision-makers often aren’t
that technically savvy. If you’re trying to convince them to invest
in your API, plain language will go much further than advanced
technical jargon.

Secondly and just as importantly, you want your API to be useful
for as many programmers, of all skill levels, as possible. If you have
to use technical jargon, you should include a link to a glossary,
definition, or tutorial explaining that concept in your API docu-
mentation.

Sometimes being wordy helps! Take a look at YouTube’s API
documentation for an example of thorough, useful documentation
written in plain language.

Thoroughly Document ALL Requests and
Responses

There’s no such thing as too much information in API documen-
tation. Users aren’t likely to read the whole thing in one sitting
anyway. When a user is just starting out with your API, they’ll
likely need a bit of handholding until they’ve integrated it into their
workflow.

https://developers.google.com/youtube/v3/guides/implementation
https://developers.google.com/youtube/v3/guides/implementation

Best Practices For Creating Useful API Documentation 30

With that in mind, you should include documentation of every
call your API can receive and provide some context for both the
parameters and responses. Also document the responses as they’ll
let your users know things are working as they should. Document
every potential error message, as well. This is all towards the goal
of letting your users see exactly what will be returned from an API
request. This will spare them the trouble of having to turn to Google
to troubleshoot if something goes wrong.

Include Additional Resources

If something is outside of the scope of your API documentation,
you should include links to the necessary information for your
users. Again, you don’t want your users to have to seek answers
via a search engine, which can be frustrating and leave them with
a negative association towards your API.

Include A Getting Started Guide

You want users to be able to get up and running with your API as
quickly as possible, so they can see how useful it is. A quick guide
on how to get started using your API is the easiest way to make
this happen.

Best Practices For Creating Useful API Documentation 31

You can take a look at Braintree’s Getting Started documentation
for an example of an excellent Getting Started guide.

Include Sample Code

The fastest and easiest way to get a new user up and running with
your API is to include some sample code in your documentation.
The user simply needs to replace the API key in the sample code
with their own key and they’re off and running.

Sample code also gives developers a chance to see finished code
implementing your API that they can reverse engineer and pattern
their own programs after. You might consider having documenta-
tion for each individual section and then have sample code at the
end showing all of the functions at work.

Best Practices For API
Documentation: Final Thoughts

Good API documentation is the foundation of quality developer
experience. It’s what separates your API from being usable and

https://developers.braintreepayments.com/start/overview
https://developers.braintreepayments.com/start/overview
https://nordicapis.com/crafting-excellent-api-code-tutorials-that-decrease-onboarding-time/
https://nordicapis.com/tips-on-creating-outstanding-developer-experiences/
https://nordicapis.com/tips-on-creating-outstanding-developer-experiences/

Best Practices For Creating Useful API Documentation 32

useful from being frustrating and inessential. What good is your
API if no one knows how to use it? How should users know to
invest time, energy, or resources let alone money if you’re releasing
a commercial API if they don’t know what your API does or how
it can benefit their business.

Having good API documentation often means the difference be-
tween a recommendation or a negative review, as well. You want
users to be glowing about your API, singing your praises to their
network and community. Good API documentation is one of the
most essential ways you can make that happen, offering useful
information, clear instructions, and easy-to-follow examples.

7 Best Practices for API
Sandboxes

by Thomas Bush

Follow these tips to improve the developer experience of your API
sandboxes.

Providing a dedicated testing environment for your API is a surefire
way to improve the developer experience and encourage signups. In
fact, many of the world’s biggest API providers — from PayPal to
Salesforce — already do so in the form of an API sandbox.

In this article, we’ll look at seven best practices to get the most out
of your API sandbox. But first, what exactly is an API sandbox, and
what are the benefits of having one?

https://nordicapis.com/tips-on-creating-outstanding-developer-experiences/

7 Best Practices for API Sandboxes 34

What Is an API Sandbox?

An API sandbox is a service that emulates the behavior of a
production API. While there are no hard-and-fast definitions, we
think of sandboxes as differing from mock APIs in being targeted
primarily towards external developers. They enable risk- and cost-
free testing of an API, making them a crucial part of a DX-oriented
API strategy.

Benefits

API sandboxes have numerous benefits, both for developers and
API owners. Developers benefit from being able to continuously
and aggressively test new or updated integrations, without wor-
rying about accruing a sizable bill (in the case of a paid API)
or having their requests blocked. Also, sandboxes can be usually
made available to any registered developers, which makes them the
perfect way for prospective developer customers to test out an API
before committing to a paid plan.

Both of these factors lead to an improved developer experience —
in and after the onboarding process —which has a definitive upside
for API owners. Also, the ability to “try before you buy” helps to
grow both registrations and paid subscriptions. Last but not least,
running an API sandbox will reduce strain on the all-important
production API.

Examples

- PayPal API Sandbox
- Uber API Sandbox
- eBay API Sandbox

https://nordicapis.com/virtualization-sandboxes-playgrounds-wholesome-api/
https://developer.paypal.com/docs/api/sandbox/
https://developer.uber.com/docs/riders/guides/sandbox
https://developer.ebay.com/api-docs/static/sandbox-environment.html

7 Best Practices for API Sandboxes 35

Seven Short ‘n’ Sweet Suggestions
for Sandbox Success

If you’re looking to launch or optimize your API sandbox, there
are quite a few best practices that can maximize your results. In
particular, we’ve identified seven suggestions you ought to adhere
to:

1. Isolate Your Sandbox

Ensure that your API sandbox is isolated from the rest of your plat-
form. A sandbox should allow developers to simulate the behavior
of your API; it shouldn’t, however, enable direct interaction with
your platform in the same way a production API would. If you’re
not careful with your sandbox, it might affect production systems,
expose real data, or contribute to billing confusion, so it’s best to
build your sandbox from the ground-up in an isolated environment.

2. Provide Free Access

Allow developers to access your sandbox free of charge. After all,
the main appeal of testing against — or testing out - a sandbox
is that it’s free! This is especially true for prospective developer
customers who may otherwise need to go through a long-winded
approval procedure to get the corporate buy-in for even your most
affordable trials.

Yes, there are costs associated with hosting an API sandbox… but
chalk it up to being a crucial part of customer acquisition and DX.
If you can’t justify the costs of an unlimited sandbox, consider
giving developers a limited number of free sandbox credits upon
registration, which will significantly reduce throughput.

https://nordicapis.com/how-to-grow-and-profit-using-a-freemium-api-monetization-model/
https://nordicapis.com/3-ways-apis-create-value-and-5-acquisitions-that-prove-it/

7 Best Practices for API Sandboxes 36

3. Recreate Production Behavior

Endeavor to make your sandbox as close as possible to the real
thing. For developers, there’s significant value in knowing that
what they test with the sandbox will behave identically with the
production API. Not knowing this, developers will be forced to run
their integrations through the second set of tests with the real API,
somewhat defeating the purpose of a sandbox.

If your production API supports POST requests, then support POST
requests in the sandbox. If your production API implements pagi-
nation, then implement pagination in the sandbox. There’s a good
chance you’ll base your sandbox on an API specification, so pay
close attention to the areas your specification might fall short.

4. Remember Authorization

In particular, don’t forget about the authorization or authentication
methods used by your production API! This aspect of API behav-
ior - which is also frequently excluded from API specifications -
deserves special recognition, since it’s such a common developer
pain point. Of course, it should absolutely be accounted for in your
sandbox, whether you rely on API keys or access tokens.

5. Account for Gateways or Proxies

When building your sandbox, consider the implications of any
gateways or proxies that stand in front of your production API.
Sure, they might not be part of the API itself, but they can still very
much affect developers’ integrations. Perhaps the best example of
this is rate limiting: often implemented at the gateway level, it can
significantly affect how integrations behave.

It’s up to you to decide if and how to account for these issues.
With rate limiting, some API owners limit sandboxes exactly as

https://nordicapis.com/4-ways-your-api-specification-can-fall-short-and-what-to-do-about-it/
https://nordicapis.com/3-common-methods-api-authentication-explained/
https://nordicapis.com/everything-you-need-to-know-about-api-rate-limiting/

7 Best Practices for API Sandboxes 37

they do with production APIs, while others - like Salesforce -
vastly increase sandbox limits to enable more extensive testing. The
author personally favors the approach taken by Evernote: limits
for production and sandbox APIs kick in at the same time (after
a certain number of calls on the hour), but sandbox users are only
rate-limited for 15 seconds, and not for the remainder of the hour.

This way, developers can test and handle the rate limit exception
without having to wait until the one-hour interval ends to resume
interacting with the API.

6. Review Sandbox Usage

If resources permit, take the time to review how your API sandbox
is used periodically. For one, looking at the sandbox’s logs may help
you to identify unexpected use patterns that you can go on to sup-
port. More importantly, looking at any frequently occurring errors
can highlight common pain points, especially in the onboarding
experience, which will improve retention when fixed.

7. Consider A Chaos Mock

Last but not least, mature API programs in high-stake industries
should consider building a chaos mock alongside their everyday
API sandbox. Coined by Microsoft architect Gareth Jones, the
chaos mock is an API virtualization that purposefully embodies
variability. The goal of a chaos mock is to enable developers to code
against all sorts of weird and wonderful API behavior, so they can
be confident their integrations will survive under all circumstances.

https://help.salesforce.com/articleView?id=000335298&type=1&mode=1
https://dev.evernote.com/doc/articles/rate_limits.php
https://dev.evernote.com/doc/articles/rate_limits.php
https://nordicapis.com/chaos-engineering-for-apis-review-of-gremlin-tool/
https://nordicapis.com/5-benefits-of-using-virtualization-to-test-your-api/

7 Best Practices for API Sandboxes 38

API Sandboxes: Final Thoughts

We’ve just reviewed seven ways to get the most out of your
API sandbox. Follow these pointers, and you’ll end up with an
environment that enables accurate and practical testing of your
API, among other benefits. Now, how else can you improve the
developer experience for your API?

What Does a Bad
Developer Experience

Look Like?
by J Simpson

We asked our community what constitues a poor developer experi-
ence. Here are anti-patterns to avoid.

In many ways, being a developer is just like any other artisan —
when it’s time to use our tools, we need them to just work. You don’t
want to spend an hour troubleshooting your hammers and saws
and chisels, ruining any momentum you’ve accumulated while
losing valuable daylight. In fact, it’s probably even more true for
developers since we wear so many hats. Not only do we need to
write code, build databases, and coordinate with collaborators, we
often have to handle support, marketing, and promotion for the tech
we create.

https://nordicapis.com/simple-rules-to-make-support-engineering-painless/
https://nordicapis.com/6-ways-to-market-your-niche-api/

What Does a Bad Developer Experience Look Like? 40

When working with APIs or Software-as-a-Service, developers
want them to be as frictionless as possible. They need to function
as they’re supposed to without requiring too much maintenance
effort. This allows programmers to stay in the flow and focus on
remaining productive, building killer products and services, and
deliveringworld-class customer service for their end customers and
clients.

In short - if you want developers to use your software, you need to
provide an exceptional developer experience (DX). So, how do we
craft a developer-friendly platform? Well, to understand a complex
subject, sometimes it helps to realize how NOT to do things…

8 Developer Experience
Anti-Patterns to Avoid

What does a negative developer experience look like? We recently
posed this question on Twitter and LinkedIn. The results were eye-
opening, highlighting some common problems that may cause a
developer to be wary of the service or abandon it altogether.

All developers stand to benefit by learning from others’ mistakes.
And these problems aren’t only relevant to public APIs, either. They
could arise within external, partner, or internal facing platforms. So
without further ado, here are eight examples of negative developer
experiences to watch out for, to help you build the best developer-
centric products imaginable.

1. Lack of OpenAPI Specifications

Standardization has been one of the most important aspects in
bringing web APIs into the mainstream. Much like the role of
standardized parts during the Industrial Revolution, API specifi-

https://nordicapis.com/pointers-for-building-developer-friendly-api-products/
https://nordicapis.com/tips-on-creating-outstanding-developer-experiences/
https://twitter.com/DoerrfeldBill/status/1496531465894510595
https://www.linkedin.com/posts/doerrfeldbill_what-does-a-bad-developer-experience-activity-6902252701976264704-5Xvp/
https://nordicapis.com/6-types-of-apis-open-public-partner-private-composite-unified/
https://nordicapis.com/will-the-rise-of-low-code-tools-bring-apis-to-the-mainstream/
https://nordicapis.com/difference-api-documentation-specification-definition/

What Does a Bad Developer Experience Look Like? 41

cations make communication and collaboration between different
applications easy and instantaneous.

That’s one of the main reasons that the OpenAPI Specification
is so revolutionary — it creates a uniform format that is easily
understood by computers and developers alike. This is why it’s so
frustrating when an API just disregards OpenAPI.

On our Twitter thread, developer Jordan Walsh talked about his
frustration of having to page through API documentation when
simply using the OpenAPI Specification would make this a non-
issue.

2. Documentation in Non-Standardized
Formats

Already, we’re beginning to see a pattern emerging. Developers
really want API documentation to be searchable, understandable,
and easily integrated into any format they desire. Developer Sidney
Maestre expressed his frustration with API documentation being
published as a PDF.

At best, this requires having the documentation open as a separate
tab, requiring you to tab back and forth, which is a total momentum
killer. At worst, this runs the risk of the file getting lost or dupli-
cated, taking up unnecessary room, and causing clutter on your
system.

3. Lack Of Examples

Theo Gough, Chief Architect, Aidence, offered a host of excellent
examples of developer frustrations, from lack of meaningful de-
scriptions to formatting restrictions. A number of his complaints
had one thing in common, though: a lack of real-world examples
of an API in action.

https://nordicapis.com/difference-api-documentation-specification-definition/
https://nordicapis.com/difference-api-documentation-specification-definition/
https://nordicapis.com/your-guide-to-openapi/
https://nordicapis.com/5-examples-of-excellent-api-documentation/

What Does a Bad Developer Experience Look Like? 42

Adding even a rudimentary example of how to use an API elimi-
nates so much confusion. It makes things much less abstract and
gives users something to model their development after.

4. Manual Integration

One of the main benefits of using APIs is automation. But manually
integrating APIs defeats much of their purpose, which is a big
reason why standards like OpenAPI are such a big deal. Having
to figure out how to configure APIs and make them work together
is a major pain and can be a stumbling block toward adopting an
API, as noted by Twitter user @StefanTMD.

5. Lack Of Consistency

When you’re using an API, you really want to know what you’re
going to get — surprises are only fun on birthdays and holidays.
Specifically, API developerswant to know that the servicewill work
every time in the way they expect.

API strategist Hirok Choudhury talked about this in response to our
LinkedIn post. According to Choudhury, poor developer experience
often arises when there’s a “lack of predictability, consistency
and simplicity while trying to discover and eventually subscribe
to an API.” Frequent revisions are another cause for concern for
Choudhury, which would also impact an API’s consistency.

For API developers, the message seems clear — it’s a good idea
to get your API as stable as possible before making it available to
the public. If you do need to make changes, use smart versioning
practices that prevent disruptions to your existing users.

https://nordicapis.com/7-business-benefits-of-cloud-automation/
https://www.linkedin.com/feed/update/urn:li:activity:6902252701976264704?commentUrn=urn:li:comment:(activity:6902252701976264704,6902817222335827968)
https://nordicapis.com/everything-you-need-to-know-about-api-versioning/
https://nordicapis.com/everything-you-need-to-know-about-api-versioning/

What Does a Bad Developer Experience Look Like? 43

6. Questionable Deployment Options

Speaking of versioning, new iterations of an API are supposed
to fix problems, not cause new ones. Developer George Jeffcock
spoke of his frustration when deployment options introduce more
problems than the design and code. “Developers should not also be
Operation/Network…bad developers experience,” he adds.

If an API is configured for a particular environment, it should solve
problems and make things easier. APIs can be configured for ev-
erythingfrom AWS to Oracle to Google Cloud. The rise in content-
aware network devices and the proliferation of new architectures
like containers and hybrid servers have made deploying APIs more
variable, with developers needing to think like network operators.
Luckily, new techniques have emerged to deal with these issues,
like DevOps and an increase in Integration Platform as a Solution
(IPaaS).

If you’re creating deployment options for yourAPIs, make sure they
work in the environment they’re intended for. To do otherwise may
result in a bad developer experience.

8. Restricted Access for Documentation

API documentation typically provides a helpful rundown of meth-
ods, parameters, and examples of API requests and responses in
action. It’s meant to be referenced by active users, but it also
provides potential consumers valuable insight into whether the API
is right for them or not.

Many of these intricacies are necessary to know before deciding
to purchase, which makes asking for permission to access the
reference documentation somewhat counter-intuitive for a self-
service API, to say the least, as pointed out by Ben Virdee-Chapman
on LinkedIn.

https://www.linkedin.com/feed/update/urn:li:activity:6902252701976264704?commentUrn=urn:li:comment:(activity:6902252701976264704,6902328517497905152)
https://doveltech.com/innovation/network-operations-and-application-development-different-worlds-no-more/
https://doveltech.com/innovation/network-operations-and-application-development-different-worlds-no-more/
https://nordicapis.com/5-ways-to-make-your-api-more-self-service/
https://nordicapis.com/5-ways-to-make-your-api-more-self-service/
https://www.linkedin.com/feed/update/urn:li:activity:6902252701976264704?commentUrn=urn:li:comment:(activity:6902252701976264704,6902372889115320320)

What Does a Bad Developer Experience Look Like? 44

Bad Developer Experience: Final
Thoughts

Many thanks to those who took time from their busy schedules to
share their painful developer experiences. By responding to these
anti-patterns, API providers have some better insight into how to
craft a more streamlined experience.

Remember, APIs are supposed to make our lives easier. If users have
to dig through documentation or work excessively hard to integrate
an API with their existing stack, they’re likely to look elsewhere.

Developers have little patience for unusable or inefficient API
products. To return to our artisan metaphor, faulty APIs are like a
hammer with a shaky head — you might grab it by accident before
remembering it’s wonky and tossing it back in the toolbox.

But what are some examples of negative developer experiences that
you’ve encountered? Leave us a comment and let us know! Let’s all
pool our expertise to make the API community flourish and thrive!

https://nordicapis.com/top-expectations-for-api-products-in-2021/
https://nordicapis.com/top-expectations-for-api-products-in-2021/

Why Time To First Call Is
A Vital API Metric

by Art Anthony

Monitor Time To First Call to ensure users can get started quickly
with your service.

We’ve all been there: you’re sorting through your smartphone and
find an app that you don’t even remember downloading. You open
it up, and, sure enough, you never finished creating an account.
With a couple of taps, you banish the app in question from your
phone forever.

You might not know it but, if you’re an API developer, the same
thing is probably happening to your product right now; some
people are signing up to your API and either never using it or letting
weeks, perhaps months, pass before they actually try it out.

We can refer to the time between the signup process and making

Why Time To First Call Is A Vital API Metric 46

an initial API call as Time To First Call, or TTFC. In this post, we’ll
be looking at why TTFC is such an important metric to track. We’ll
also see if there’s anything you can do to improve it. (Spoiler alert:
there is.)

A Deeper Dive Into TTFC

Above we suggested that Time To First Call refers to the time
between signing up and making a call. In reality, tracking this
metric isn’t quite that simple. Is measuring the time until a GET
request is sent sufficient, for example, or should we be looking for
a more complex query?

It also doesn’t seem right to include error messages, as any advan-
tages of having a low TTFC are far outweighed by API consumers
encountering errors on their first attempt(s) to call. And does the
clock start ticking when someone signs up for an account, or would
arriving at the documentation page of the developer portal be a
better starting point?

We don’t have hard and fast answers to these questions, but the
following seems like a reasonable template for measuring Time To
First Call to us:

Time to First Call (TTFC): The time taken between a developer
accessing documentation, and/or signing up for an API key and
making their first successful API call (of any complexity).

The good thing about this metric is that, indirectly or otherwise,
it’s probably one you already measure to some extent or another.
Armed with the information above, you can ensure that you’re
doing so consistently across all your offerings.

Why Time To First Call Is A Vital API Metric 47

From Time To First Call to Active
User

So what is a healthy target TTFC? Unfortunately, there isn’t a stan-
dard benchmark to shoot for because TTFCs can vary considerably.
Measuring TTFC can depend on the complexity of the offering, the
price (if any) of the service, whether or not the API or its developers
are a known quantity, and how many competing products are on
the market.

In the past, Twilio has referenced their efforts to enable API
developers using their services to “get up and running in 5 minutes
or less.” In their comparison reviews, Ably uses the following
benchmarks for the comparable metric of ‘Time to “hello world”’:

• 5/5 – < 30 mins
• 4/5 – 30 mins to an hour
• 3/5 – 1-2 hours
• 2/5 – 2-4 hours
• 1/5 – 4+ hours

You probably already have a rough idea in your head of how long
a typical customer takes to place their first call. And it’s always
interesting to see how that number lines up with reality.

Bear in mind that making a first call is very different from someone
becoming an active user. Reducing the former won’t necessarily
increase the latter, BUT it will likely increase your funnel’s number
of potential users. Or, at the very least, an optimized TTFC will
speed up the rate at which they make their way into it.

https://www.twilio.com/blog/announcing-twilio-video-webrtc-go

Why Time To First Call Is A Vital API Metric 48

Exploring “First Call Motivators”

There are all sorts of reasons why someone might sign up to use
your API and make their first call. In an article for TechCrunch,
Joyce Lin covers a few of these:

- Actively searching for a solution to a particular problem
- Heard about your product and are curious about it
- A project or role requires that they use your service

Their enthusiasm, willingness to forgive flaws, and motivation to
make things work will vary massively depending on which of those
camps people who find your API fall into.

Depending on their first impressions, your API might become
something developers can hardly resist trying on their lunch break.
Or, it could be something that ends up at the very bottom of their
to-do list. Regardless of how they find you, the secret sauce is to do
the following as quickly as possible:

Demonstrate what your product does, how it does it, and why it’s
the best at doing it.

Of course, all that’s easier said than done…

Improving Your Time To First Call

Reducing your average TTFC isn’t like, say, improving the load time
of a web page. There’s no silver bullet for improving the metric, but
there are different things you can do that will likely help to improve
the Time To First Call of a particular product:

Extensive Documentation

At the risk of becoming a broken record, we’re back at it again,
talking about the importance of great API documentation. The

https://techcrunch.com/2021/07/12/the-most-important-api-metric-is-time-to-first-call/
https://nordicapis.com/best-practices-for-creating-useful-api-documentation/

Why Time To First Call Is A Vital API Metric 49

key to this is understanding your audience well enough to tell
them what they need to know straight away, and highlighting that
information appropriately, while covering what they might want
to know at a later date elsewhere.

Demonstrate Use Cases and Examples

Maybe this could fit in the documentation section above, but we
think it’s important enough to deserve its own paragraph: providing
in-depth examples of what your API can do will help to capture
some of those who are on the fence about whether or not it’s the
right solution to their problem.

Assessing Roadblocks in the Process

The best example of a roadblock to TTFC is requiring manual
approval before an API key is issued. It may not be a dealbreaker if
you really need something like that in place, as long as approval is
timely. If it’s not, you risk both losing out on potential users who
were “on the fence” and upping your TTFC.

Encourage Making Calls Early

This (probably) isn’t as simple as directly telling people, “hey,
time to start calling!” However, it might help to provide sandbox
environments and highlight how the API reacts to what different
users will do with it. Then, they’ll know exactly what to expect
when they call it.

Consider the Role of External Tools

Postman public workspaces, first introduced in 2020, have been
described as the first “massively multiplayer API experience.” The

https://blog.postman.com/introducing-postman-public-workspaces/

Why Time To First Call Is A Vital API Metric 50

Joyce Lin article linked above mentions two case studies that cover
Vonage and Symbl.ai’s efforts to let users explore their APIs before
making calls.

Writing for Nordic APIs, Derric Gilling previously called Time
To First Hello World a north star metric for measuring developer
relations. Acting on the points above should reduce TTFC, though
it may not do so immediately, and that’s extremely valuable.

A lower TTFC is generally associated with a better developer
experience, which usually equates to better user retention, more
customers (and revenue), and a more robust API offering as a
whole.

Time To First Call: Final Thoughts

In the past, we’ve written about the rise of low-code/no-code tools
and the impact that increased API control might have on future
adoption in the space. We’ve also touched on the part external tools
can play in lowering TTFC above.

The process of people hooking up with your API via a third-party
service, rather than going directly through your developer portal,
might look different than you’re used to. Still, it could be valuable
when it comes to lowering barriers associated with your API.

Although the future of APIs likely isn’t (just) making calls to
services found in extensive directories via third-party services like
IFTTT or Zapier, it will almost certainly be a part of it. It’s worth
thinking about that eventuality sooner rather than later.

In the meantime, however, there’s more than enough to get to
work on when it comes to lowering your TTFC and, ultimately,
improving the extent to which people engage with your API.

https://blog.postman.com/vonage-communications-apis-postman-collection/
https://blog.postman.com/explore-symbl-ais-new-postman-public-workspace/
https://nordicapis.com/how-to-measure-the-success-of-developer-relations/
https://nordicapis.com/how-to-measure-the-success-of-developer-relations/
https://nordicapis.com/will-the-rise-of-low-code-tools-bring-apis-to-the-mainstream/
https://nordicapis.com/why-no-code-platforms-should-grant-api-control/

Developer Marketing for
API Companies

by Adam DuVander

Marketing your API to be developer-focused will naturally affect its
developer experience.

Nordic APIs has long tracked the API-as-a-product trend, where
companies expose their products primarily through a developer in-
terface. The companies that treat their APIs as an external product
need to reach potential customers, but technical audiences can be
difficult to attract. They’re often averse to traditional promotion
techniques. So, how do you market to developers?

If you want developers to discover, use, and eventually pay for
your API product, you need to change your approach. In my book,
Developer Marketing Does Not Exist, I share the philosophy of
“education not promotion” to reach a developer audience. In this
post, I’ll give you the highlights. But first, let’s make sure your API

https://nordicapis.com/8-unexpected-challenges-of-running-an-api-as-a-product/
https://everydeveloper.com/developer-marketing/book/

Developer Marketing for API Companies 52

product is developer-focused.

Are You Developer-Focused or
Developer-Enabled?

How you market your API will depend on its intended audience.
Many companies trip up on this step because they assume their
users are exclusively developers. While that’s a natural expectation,
it’s more likely you’ll be courting multiple audiences, with devel-
opers the less immediate target.

For example, let’s say you offer customer relationship management
(CRM) software with an API. Your customers require a developer
to build integrations and automations into their own systems by
writing code using your API. Most advanced use cases will need
code to make API calls or respond to webhooks. These facts lead
you, the CRM company, to aim your marketing at developers.
The problem is that most developers are not researching the right
CRM API for their use case. In fact, it’s most likely to be another
department—such as sales — that picks out a CRM. If developers are
consulted at all, it’s to confirm they’ll be able to implement another
team’s API integration use cases.

CRM APIs are likely to be developer-enabled, at the far left of this
continuum:

At the opposite end are developer-focused APIs. Here you’ll expect
to be solving a genuine developer problem. The API may replace
code a dev might otherwise create and maintain. Or, perhaps

https://nordicapis.com/6-ways-to-market-your-niche-api/
https://nordicapis.com/apis-101-what-is-an-api-call/
https://nordicapis.com/your-guide-to-webhooks/

Developer Marketing for API Companies 53

it connects to cloud infrastructure. There is utility for a single
developer in developer-focused APIs.

It’s too simplistic to pin APIs as either developer-enabled or
developer-focused. The reality is likely somewhere along the
developer marketing continuum. Chances are good that you know
if you’re on one of the extremes. The risk for the CRM company
— and any product with non-developer users — is to assume you
need to market your API like a developer-focused company.

To enable developers to use your API, there’s a minimum bar for de-
veloper experience, documentation, and support. As you move up
the continuum from developer-enabled to developer-focused, API
marketing activities increase. As you’ll see in the coming sections,
those activities look a lot different than traditional marketing.

Find the Real Competitor to Your API

Just as many companies mistake their audience, they also mistake
their largest competitor. As Nordic APIs pointed out in its API-as-
Product eBook, developers may attempt to replace your product’s
functionality with their own code.

While some products are harder than others to duplicate, this
competition is actually something you can use to your advantage.
Developers love building. Their job is to solve problems with code
and efficient solutions can be addicting. It’s no wonder that when
faced with the problems your API solves, many developers will first
think about how they would architect it themselves.

Try this with any developer, whether a potential customer or an
internal engineer: describe a problem that could be solved with
code. They may have a few initial clarifying questions. Quickly,
it will be clear how their brains are wired for problem-solving.
You can almost see the pieces swirling in their mind, like Sherlock
Holmes as he deduces how a crime occurred.

https://everydeveloper.com/developer-marketing-continuum/
https://nordicapis.com/tips-on-creating-outstanding-developer-experiences/
https://nordicapis.com/tips-on-creating-outstanding-developer-experiences/
https://nordicapis.com/ebooks/api-as-a-product/
https://nordicapis.com/ebooks/api-as-a-product/

Developer Marketing for API Companies 54

It’s possible a competitor arises as a solution during this ideation
process. But that’s only likely if the other company has already
shown that they understand the problem space. More likely, the
developer’s thoughts go to common platforms and frameworks,
open-source tools, and the other elements they are already using
to do their work.

The conundrum becomes: how do you compete with a developer’s
instinct to use their current tools, many of which are practically or
actually free? The answer: you don’t.

Help Developers Solve Their
Problems

Rather than fight against this “build it myself” tendency, follow its
momentum. Your marketing can speak to the ideas already swirling
in developer minds. Take them down the path to build, run, and
maintain a service like yours. You aren’t promoting your API with
this marketing, at least not directly. Instead, you’re demonstrating
your authority as a company that knows how to solve these
problems.

I call this approach the Developer Content Mind Trick. It works in
all types of content, but especially shines as a deep, foundational
guide.

https://www.heavybit.com/library/blog/the-developer-content-mind-trick-for-signature-content/

Developer Marketing for API Companies 55

For example, OpenCage Data provides an API for reverse geocod-
ing. Given a location described by latitude and longitude coordi-
nates, their service returns a human-readable description of the
place. Many developers appreciate that OpenCage is built on open
data. They might also be tempted to piece together their own
reverse geocoder using a combination of open-source software
and community-generated data. A traditional marketing approach
could have been to detail the features and benefits of OpenCage for
these developers but hide behind-the-scenes details from view.

Instead, the company published a reverse geocoding guide to
help developers architect and build a reverse geocoder. It includes
contextual sections on use cases, why this type of geocoding is
important, and how open data helps. Throughout, developers will
get a sense of what it takes to create a solution (a lot!) and how
much the OpenCage team knows about reverse geocoding (a whole
lot!). Some developers will read this guide (disclosure: written in
collaboration with the EveryDeveloper team) and go on to build a
reverse geocoder — they can even follow a tutorial to get started.
But, most will be convinced it’s harder than it seems and will use
OpenCage instead.

https://19yw4b240vb03ws8qm25h366-wpengine.netdna-ssl.com/wp-content/uploads/Reverse-geocoding-guide-example.png
https://opencagedata.com/
https://opencagedata.com/reverse-geocoding
https://everydeveloper.com/consulting/

Developer Marketing for API Companies 56

Keep in mind, this type of content is not documentation. Your
docs are essential, and they solve their share of developer problems.
However, few developers will discover you through documentation,
which is by definition focused on your product.

Your API marketing should focus not on your product, but on the
business and technical problems your product solves.

Developer Marketing: Final
Thoughts

Not every part of your API marketing can be 10,000-word edu-
cational guides. Fortunately, you can use the same educational
approach to reach developers in shorter formats like blog articles,
webinars, conference talks, and social media posts. In fact, my book
includes chapters on open source, events, and tools, in addition to
more traditional content.

What you want to avoid in your API marketing is switching into
promotional mode. Remind your content creators about the effec-
tiveness of education over promotion when it comes to developer
audiences. Aim for consistency by sharing an understanding of
your developer audience across your organization.

Remember the problems you solve and the way a developer will
lean toward building the solution. Follow that momentum and
show developers how you’ve thought through the solution they
want to implement. They’ll appreciate the education while gaining
respect for your authority in the problem space. The end result is
that more developers will opt to use your product.

https://everydeveloper.com/developer-marketing/book/

Why Your API Needs a
Dedicated Developer
Experience Team

by James Messinger

If possible, consider assigning team members to actively support
your project’s developer experience.

In the 2019 State of API report, surprisingly, only 37% of API
providers viewed documentation as a top priority. When API
consumers were asked to vote on the most important characteristic
of an API, 60% earmarked “ease-of-use” as their primary desire
when integrating, with documentation trailing in 3rd place. While
documentation can contribute to overall ease of use, these numbers
reveal that it is not the only element that plays into a good
developer experience.

So, the question is: How can API companies improve their overall

https://nordicapis.com/dx-should-be-a-priority-reveals-state-of-api-report-2019/
https://nordicapis.com/dx-should-be-a-priority-reveals-state-of-api-report-2019/

Why Your API Needs a Dedicated Developer Experience Team 58

process and deliver the high-quality experience their users want?
One of the best answers to that question is: Focus on creating a
dedicated developer experience team that can empower your users
by making it easier to understand, easier to build, and easier to
integrate (particularly if your company develops customer-facing
APIs).

Understanding the Difference:
DevRel and DX

What exactly is Developer Experience (DX)? DX is all about under-
standing developers, their needs, their abilities, their values, what
they’re trying to accomplish, what tools and technologies they’re
using, the integration points, and how they *feel *while using a
product.

Developer relations (DevRel) is a vital component of a compre-
hensive DX strategy. Some companies are large enough to have
a dedicated DevRel team, perhaps even with multiple distinct roles,
including evangelists, advocates, and sometimes even tech writers
and growth hackers. These roles are all aimed at inspiring positive
relationships with developer users, through sharing knowledge that
fills the gap between the creators and consumers of tech.

Whether your company has a dedicated DevRel team or a DX team
that includes DevRel responsibilities, it would be remiss not to
acknowledge the role developer relations plays under the larger
umbrella of developer experience.

Why Developer Experience?

Software companies and SaaS providers that sell user interface (UI)
products have recognized the importance of good user experience

Why Your API Needs a Dedicated Developer Experience Team 59

(UX) for decades. A great UX can be the key differentiator that
makes your product successful. It’s how Apple won the cell phone
market and how Nest made thermostats sexy.

DX is to APIs as UX is to UIs. APIs are products, and developers
use those products. Those developers have come to expect a high
level of quality, ease-of-use, onboarding, and support thanks to
companies like Stripe, Nexmo, and HelloSign, who are continually
raising the bar.

“DX is the acquisition of knowledge needed to imple-
ment an API. Make the acquisition easier; knowledge
more digestible; the journey of implementing it simpler;
lives of developers better” — Anthony Tran, creator of
the Luna design system

Why the Shift?

So why are companies suddenly starting to realize that they need
a DX team? After all, they’ve scraped by without DX for decades.
What changed?

In the early 90s and into the 21st century, businesses typically
invested millions of dollars in on-premise software packages such
as CRMs, ERPs, and databases. They then relied on an army of
expensive contractors to customize these products to meet their
needs. Integrating in decades past was a big undertaking — in terms
of skill, labor, and capital.

However, as companies have moved into the cloud, they’ve shifted
away from monolithic software platforms and toward smaller,
micropayment-based SaaS products. This propagation of SaaS prod-
ucts has led to the need for standardized integrations between them,
which in turn has fueled the rise of the API economy. By 2011, REST
was an industry standard, and in just under a decade, we’ve seen
nearly a 1,000% increase in the number of APIs on the market.

https://luna.sainsburys.co.uk/guidelines
https://nordicapis.com/tracking-the-growth-of-the-api-economy/
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17

Why Your API Needs a Dedicated Developer Experience Team 60

This Cambrian explosion has virtually eliminated the need for
expensive consultants who understand the intricacies of million-
dollar software packages. It’s now possible for any developer to
integrate with these APIs to link disparate systems and automate
their companies’ workflows.

The API economy has created a culture of expectation for APIs. It’s
now assumed that an API will be readily available, and in many
cases unmetered, for consumers or developers looking to “connect”
to your application. In fact, for many customers, your API is more
important than your UI. Whether you have an API and how easy
that API is to use may be the differentiators that make the customer
choose your product over your competitor’s.

So, how do you ensure they get the best, most well-rounded API?

You Need a Dedicated Developer
Experience Team

Developers aren’t the best at incorporating UI into their designs.
That’s why many companies employ UI specialists who are respon-
sible for putting in a friendly interface on top of the components a
dev team has built.

The same holds for APIs. Your dev team shouldn’t be solely respon-
sible for an API’s developer experience, because that’s not the dev
team’s specialty.

During ShipEngine’s early days, one of the defining moments for
our development team was recognizing that to increase adoption
we had to provide more focus on creating a product that developers
loved* enough* to justify building out a new integration. We
weren’t the first shipping API on the market, and we won’t be the
last, so we knew we needed a way to stand out.

Why Your API Needs a Dedicated Developer Experience Team 61

We started to look at how API companies in other industries
navigated around their competition.

Take popular payment processing platforms like PayPal and Stripe,
for example. Many may recognize PayPal as one of the leaders in
the industry — and, as one of the first on the market, they deserve
a seat at the table. But, historically, their API has been clunky and
awkward to use. When Stripe was first introduced, they knew they
were offering a product that developers would love, but also knew
gaining a loyal following would require a lot of legwork.

How were they able to do it?

By building an API with a good DX.

They designed a killer API with an emphasis on consistency and
quality standards, wrote user-friendly documentation, provided
useful code samples and powerful SDK libraries, wireframed their
website to prioritize developers’ needs, and they employed a great
developer relations team that attended conferences and wrote
knowledge-based articles. They hacked their way into a tight
market by creating a product that developers loved, and experience
they would want to share with others.

“Happy developers are chatty developers, and when we
talk to each other to recommend products, the oneswith
the best DX are at the top of the list.” — Sam Jarman, DX
speaker and writer

Stripe capitalized on their ease-of-use, knowing they could lean
on developers to sell their product for them so long as they could
show them how pleasant the integration experience could be. Their
success was even enough to make PayPal jealous.

So, what’s the takeaway?

Stripe is not the only company to quickly take over market share
through improved developer experience. So how were they able to

https://www.samjarman.co.nz/dxguide
https://techcrunch.com/2013/03/08/did-paypal-just-clone-stripes-api-documentation/
https://techcrunch.com/2013/03/08/did-paypal-just-clone-stripes-api-documentation/

Why Your API Needs a Dedicated Developer Experience Team 62

corner the market in such a short amount of time? I believe it was
by employing a diverse multi-disciplinary team dedicated to the
four primary elements of developer experience.

4 Main Responsibilities of a
Developer Experience Team

At ShipEngine, our Developer Experience team exists to ensure
an exceptional experience for the developers and customers using
our API products. By focusing on these four primary areas of
responsibility, we’ve been able to design better features, champion
the interests of developers, translate feedback, and advise other
internal departments on how to better empathize with and design
for developers.

The four primary areas are:

1. API Design

While product development is largely left up to engineers and
product teams, a Developer Experience team should maintain
responsibility for providing the guidance and standards engineers
need to create a product that is received well by others. This
includes every part of its interface, including the protocol, style,
naming, models, operations, authentication, status codes, headers,
errors, paging, sorting, querying, and more. It may also include
some aspects of the behavior and implementation details of the API
as well. Types of Deliverables:

- Design guidance
- Design review
- Style guides
- Specifications / definitions

https://www.shipengine.com/industry-trends-from-api-world-2019/?ref=NordicAPI-Blog

Why Your API Needs a Dedicated Developer Experience Team 63

2. Quality Assurance

WithAPIs, you alwayswant to aim for quality through consistency!
To ensure an API product and developer tooling meet a high
standard of quality, the DX team must become responsible for
employing automated tests, linters, and processes that verify com-
pliance with designs, schemas, and style guides. Quality assurance
also involves the propagation of a culture of quality throughout the
design, product, and engineering teams. Types of Deliverables:

- Contract testing
- Specification testing
- Style guide compliance testing
- Verifying accuracy and clarity of docs and tooling

3. Developer Tooling

You want to give developers a chance to test out your API before
investing in full integration. So, providing a robust library of
developer tools is a great way to show not tell them how great you
are. Developers want and need schemas, code samples, reference
implementations, SDKs, and a variety of other resources to help
guide them through the build-out. Types of Deliverables:

- Code samples
- Demos / reference implementations
- SDKs and libraries
- Specifications, definitions, and schemas
- Internal tooling and automation
- Integrations with developer tools and services

4. Developer Relations

And finally, the role we (and users) are most familiar with. All
communications and interactions with developer customers, such

https://nordicapis.com/8-openapi-linters/
https://www.shipengine.com/test-and-visualize-shipengine-apis-using-our-postman-collections/?ref=NordicAPI-Blog

Why Your API Needs a Dedicated Developer Experience Team 64

as documentation, training, release notes, community events, and
user feedback studies fall underneath Developer Relations. Deliver-
ables:

- Documentation / Tutorials / FAQs
- Release notes / changelogs
- System status info (downtime, bugs, performance)
- Media content (blogs, videos, etc.)
- Training and materials
- User research studies
- Events/community engagement (meetups, hackathons, confer-
ences, etc.)

DX Team: Final Thoughts

Just as UI/UX has been a key differentiator for Graphical User
Interface products, Developer Experience is a key differentiator for
API products. And, a good DX strategy extends beyond the roles
and responsibilities of DevRel.

Tips on Creating
Outstanding Developer

Experiences
by Bill Doerrfeld

Experts from our community share their top tips for improving
developer experience.

Developer Experience (DX) for developers is akin to User Experi-
ence (UX) for end-users. The API products that streamline DX tend
to increase interest and retain a following. But it’s not only public-
facing services; internal and partner APIs benefit from a focus on
DX as well.

Developer portals can achieve quality DX by adopting discover-
ability, quicker onboarding, and accurate documentation. But good
DX is ingrained into a well-designed API that follows best style
practices too. Developer advocates are necessary to address issues

Tips on Creating Outstanding Developer Experiences 66

and collect feedback to refine feature sets and create tutorials. This
is only a primer to the many facets of DX.

In this article, we dig into how to create outstanding developer
experiences for our APIs. To that end, we interviewed three ex-
perts in the field: James Messinger, Developer Experience Director,
ShipEngine, Derric Gilling, CEO, Moseif, and Srushtika Neelakan-
tam, Developer Advocate, Ably Realtime, to discover what they are
doing at their respective groups to enhance services for developer
users.

DX For Onboarding

The hallmark of DX is meeting your user’s needs, at whatever
stage they are at. During initial use, these needs fluctuate based
on the developer’s knowledge. But a general rule of thumb is to get
developers to “Hello World” as soon as possible.

According to James, a developer portal should adapt to the con-
sumer at any stage of their journey, but should especially consider
the initial onboarding experience.

“For brand-new users, the portal should provide a guided onboard-
ing experience, with a ready-to-use sandbox environment, API
keys, getting started guides, and step-by-step tutorials,” said James.

Derric echoes this statement, encouraging API owners to “create
an awesome onboarding flow” that makes it as easy as possible
to start pinging the API. He recommends that API owners focus
on the minimal number of steps required to deploy your solution.
He encourages code snippets, copy/paste abilities, and “successfully
received” messages for asynchronous processing.

Small DX enhancements can keep developers active and engaged.
But it’s also essential to consider the rate of information disclosure.
If your full configuration is complex, involvingmultiple integration

https://nordicapis.com/speakers/james-messinger/
https://nordicapis.com/speakers/derric-gilling/
https://nordicapis.com/speakers/srushtika-neelakantam/
https://nordicapis.com/speakers/srushtika-neelakantam/

Tips on Creating Outstanding Developer Experiences 67

points, these can be surfaced later using what Derric calls gradual
onboarding.

Srushtika adds that well-structured documentation and video tu-
torials can highlight use cases. She emphasizes self-service capa-
bilities like a sandbox for debugging can improve the onboarding
process tremendously.

“Self-service developer tooling and onboarding guides are incredi-
bly appreciated by the developer customers,” says Srushtika.

DX For Developer Dashboards

But DX does not end with onboarding. As developers mature their
applications, they require documentation checkups as well as a
center for account information. This is where a developer account
dashboard comes in.

James notes that customers who have already been converted
require a portal showing metric usage, billing information, release
notes, and upgrade guides. A dashboard for easy access to account
information is simply necessary to sustain an API-as-a-product
business.

To see a minimum viable developer dashboard setup, create an
account with Dark Sky to view their API console. They have a
simple developer dashboard with API consumption rates, billing
information, account balance, a reset API key ability, and other
ways to maintain your account.

“Seriously, though, sometimes you have to move mountains to
get developers to fully adopt and use your developer platform,”
says Derric. He recommends the following for maintaining great
developer portals that can support developers well after initial
onboarding:

https://darksky.net/dev/account

Tips on Creating Outstanding Developer Experiences 68

• Well organized, up-to-date documentation and working sam-
ples

• Framework specific SDKs
• One-click deployments
• Awesome support

DX For Developer Advocates

We discuss machine-machine connection so often; it can be easy to
forget there are actual humans on both sides! Support engineers and
developer advocates must have empathy for their users, a crucial
human element to sustain relations and encourage use.

Derric recommends API owners put more effort into maintaining
personal relationships with their user base:

“Create personal relationships with your developers. Learn from
them and understand their use cases. Developers love talking about
the projects they work on and can turn out to be your largest
evangelists,” says Derric.

Srushtika agrees that personal connections with developers can
significantly benefit your program. She stresses that gathering
developer feedback is paramount for early programs:

“Ask your users in a friendly way what you could do better with
your docs, tutorials, events, community, etc., and what else they’d
find useful,” says Srushtika. “You’ll definitely get a lot of pointers
and a direction to go in.”

Srushtika also recommends staying ahead of the curve when it
comes to new frameworks and hot programming languages.

Derric encourages building a team of informed dedicated developer
advocates that are more than liaisons to engineering.

Tips on Creating Outstanding Developer Experiences 69

“Developer support is one of the best ways to learn where there are
obstacles getting started with your platform. For small companies,
even the CEO should have their hand in support,” says Derric.

DX For Developer Communities

Each developer community is unique in makeup. Developer ad-
vocates should seek to meet their user support needs and insert
themselves where developers are active.

“API advocates should be wherever their customers are,” says James.
“Determining how to prioritize your advocacy efforts is a matter
of observing your community’s behavior and measuring different
engagement methods for effectiveness.”

Our panelists recommend utilizing community discussion forums
like Stack Overflow, Discord, GitHub, Reddit, or Slack to respond
to questions from developers. James also notes advocates should
consider hackathons, meetups, or exhibiting and speaking at con-
ferences.

However, for early-stage API programs, Derric notes that some
community activities may put the cart before the horse. He recom-
mends focusing on a “single user experience.” This means building
self-service tools, blog content, and prioritizing support for existing
adopters.

“Don’t launch a community forum if you don’t already have an
existing community,” says Derric. “As your developer program
grows, more effort should be invested in nurturing and empower-
ing the growing community, especially finding key influencers and
evangelists.”

Nonetheless, the sheer amount of tasks involved in DX can be
daunting. Srushtika notes that learning how to prioritize tasks
and time management for such tasks can be difficult. She thus

Tips on Creating Outstanding Developer Experiences 70

stresses API providers to consider what activities are most value-
generating.

DX Time and Task Management

“Dev Advocacy teams have a huge range of responsibilities which
all seem\
equally important,” says Srushtika. “In such cases, it really comes
down to prioritizing the various activities based on the value they
offer vs. the time and resources you’ll need to spend on those
activities.”

For example, Srushtika notes how presenting a talk or organizing
an event may require considerable effort and time, and not directly
guarantee value. Whereas investment in technical support, which
could take minimal effort and negligible time, could yield greater
results, including insight into first-hand feedback from users.

In addition to considering the time and output value for developer
relations activities, Srushtika adds that DevRel investment should
match overall company goals:

“Often prioritization of various DevRel activities is
done based on the broader company goals for the quar-
ter or year, but it is often a sweet spot between spread-
ing awareness about the product, educating people on
how to use it, and retaining existing customers by
continually improving their DX.”

KPIs to Improve DX

What sort of metrics should developer programs be considering? If
you are taking all these points to heart, you will hopefully notice

Tips on Creating Outstanding Developer Experiences 71

more onboards, sign-ups, and more API key registrations – all the
hallmarks of success. Or are they?

Derric notices that some KPIs used to measure developer expe-
rience are purely vanity metrics. Pageviews and sign-ups don’t
necessarily correlate to an active platform or end developer success.
In his words, “these metrics only measure acquisition, and do not
account for what happens after sign up.”

Instead, Derric recommends API providers align all teams on
two north star metrics which are more intimately tied to actual
production use:

• Weekly Active Tokens: This number measures the distinct
tokens accessing the API in a given week. This better reflects
actual product usage, as opposed to sign-ups, which may not
be real sustained users.

• Time to First Hello World: Time to First Hello World
(TTFHW) is the time it takes for a developer to sign up,
create a simple app or test, and make their first hello world
(i.e., their first API).

James agrees with Derric that TTFHW is a reliable metric to
consider. But still, you have a choice on what constitutes your API’s
Hello World. James recommends tracking an action that is more
meaningful than merely a first successful API request. For example,
At James’s company ShipEngine, TTFHW is measured by creating
your first shipping label.

James also encourages tracking trial conversion rates and recom-
mends the tool Haxor for quantifying developer experience and
measuring KPIs.

Srushtika also agrees that measuring DevRel is more complicated
than sign-ups; correlating marketing efforts to revenue generation
is tricky to achieve. “Developer programs impact the revenue

https://haxor.sh/

Tips on Creating Outstanding Developer Experiences 72

and sign-ups in very indirect ways which could be very hard or
sometimes impossible to track or measure,” she says.

Regardless, Srushtika recommends also searching for insights in the
following areas:

• Content: Views of your developer-centric content, including
tutorials or videos,

• Forums: Look for trends in engagement on support questions.
• Talks: Consider feedback from events and lectures, spikes in
attendance, or views.

• Hackathons: Monitor the usability and hiccups during devel-
oper onboarding at live events.

“All of the DevRel activities feedback into the product, engineering,
sales, and of course marketing, so DevRel has a powerful impact on
various functions of the business,” says Srushtika.

Building Outstanding DX: Final
Thoughts

There we have it. In summary, here are some quick lessons we’ve
learned on how to build quality developer experiences:

• Create a quick and easy onboarding process: As Derric
says, “Build something that developers love and is easy to get
started.”

• Build killer self-service tools and documentation: Do not
hide docs, have self-exploratory resources at hand. The more
you invest in developer resources, the less one-one support is
needed.

Tips on Creating Outstanding Developer Experiences 73

• Prioritize developer experience investments carefully. Pri-
oritize developer support – this should come before massive
marketing campaigns. Consider the stage you’re at and build
community tools appropriately.

• Use the right data and feedback to improve. MonitoringDX
is tricky. Source feedback from your community, and consider
tracking a stable metric tied to business value, like Weekly
Active Tokens or TTFW.

How To Find An Audience
For Your API?

by Art Anthony

Here are some tips to help refine the audience for your API.

So, you’ve built your API. Or maybe you’re not quite there yet?
Whatever stage in the process you’re at, it’s never too early to start
thinking about who will actually use your API.

Of course, that’s easier said than done. But it’s an essential step of
the process because, if you fail to do it, you won’t know how to
market it. A one size fits all approach may fail to resonate with
your ideal users, and your API will struggle to grow as a result.

The key to avoiding this is finding an audience that falls in love
with your product. Again, easier said than done. However, finding
a market that can’t get enough of your API and wants to talk about
it to their fellow developers can make your life much easier.

How To Find An Audience For Your API? 75

Below we’ll cover a few of the questions you should be asking to
refine your audience. We’ll outline some of the steps you need to be
taking as you build your service to find an audience for your API.

What Does Your API Do?

This might sound like a rudimentary question, but it’s one that you
need to answer. Distilling what an API does into a single sentence
is helpful because it prompts you to think about your positioning.
Here’s an example of how Twilio does this from their blog:

“Twilio helps organizations and brands of all sizes create meaning-
ful moments with users across the globe — from the simplest text
messages to life-saving communications.”

It’s true that “meaningful moments” is a little vague, but elsewhere
in that post, Twilio talks about enabling developers “to build unique,
personalized experiences for their customers.” Already, a picture of
Twilio’s customer base is starting to form:

• Organizations who want an API for B2C communications
• Need for a high degree of customizability
• Focus on text as a medium (although Twilio covers channels
like voice and video too)

• Requirement for high reliability and uptime, evident from the
reference to sending “life-saving communications”

Armedwith the information above, it becomes easier to think about
how to market Twilio to potential developer-consumers with an
elevator pitch. Or a TL;DR, as Twilio frames the above on their blog.
And, as we all know, this is something Twilio has done incredibly
successfully.

https://www.twilio.com/the-current/what-is-twilio-how-does-it-work

How To Find An Audience For Your API? 76

Carry Targeted Messaging
Throughout

It’s not enough just to think about why your product is useful to
a specific audience. You need to make sure you’re conveying that
message across everything from landing pages to documentation.
That means demonstrating the value you can add, including code
samples and use cases where possible.

If you have competitors on the market, it’s worth looking at how
they perform. How are they appealing to their audiences? If you’re
trying to appeal to a slightly different crowd, think about how you
can tweak the type of language used to do that. IFTTT, for example,
has done an excellent job of positioning automation and complex
API terminology in a way that’s friendly to a layperson.

If you’re marketing to the same audience as another product, look
at how you can convey what you do differently to them and what
makes your product more appealing than them. Or, perhaps it can
complement those services. After all, we’re talking APIs, so things
don’t have to be cutthroat and can be more collaborative where
there are opportunities for that.

Where to Find Your Audience?

Where you actually look for users will vary massively depending
on what your target audience looks like, but, in the case of APIs
with technical implementation required, it will likely come down
tomastering successful developer marketing. This typically dictates
an educational, non-salesy approach.

But, once again, this all starts with a deep understanding of the
value your API can offer. We’re back to that big question of “what

https://nordicapis.com/best-practices-for-creating-useful-api-documentation/
https://nordicapis.com/5-ways-sdks-and-code-samples-boost-developer-experience/
https://nordicapis.com/5-ways-sdks-and-code-samples-boost-developer-experience/
https://ifttt.com/explore
https://nordicapis.com/developer-marketing-for-api-companies/

How To Find An Audience For Your API? 77

does your API actually do?” The more resources you can point
interested developers to, like use cases and blog posts, the better.

Some good news is that you don’t have to do all of this on your
own — consider listing your API in marketplaces, like RapidAPI,
or directories, like ProgrammableWeb. If you describe and tag
your API(s) effectively, these represent a ready-made audience of
developers who are hungry for great APIs.

Likewise, sites like ProductHunt, HackerNews, and even relevant
subreddits on Reddit all represent good spots to highlight APIs that
have enough wow factor to score upvotes. In other words, it helps
if your API has some extraordinary use cases!

But, however important external buy-in might be, you also need
internal buy-in…

Is Your Organization as Invested as
You Are?

In a previous post, we talked about getting business buy-in for an
API initiative. That’s really important here because it can have
a massive impact on the adoption of the product outside of the
company. Support teams, for example, can’t evangelize the API if
they don’t understand how it could help customers… or even that
it exists.

Talking with people from Support or Operations can help shed
light on the customers’ problems, enabling you to figure out API
solutions that can address them. Even better if you can get insight
into the problems your customers’ customers are having, as this
enables you to build services with a community of end-users the
API will reach in mind.

Before, we’ve discussed treating an API as a product, and one
thing we highlighted there was the importance of designing a high-

https://rapidapi.com/
https://www.programmableweb.com/apis/directory
https://www.producthunt.com/
https://news.ycombinator.com/
https://www.reddit.com/
https://nordicapis.com/how-to-get-business-buy-in-for-apis/
https://nordicapis.com/how-to-get-business-buy-in-for-apis/
https://nordicapis.com/how-to-get-business-buy-in-for-apis/
https://nordicapis.com/how-do-you-treat-an-api-as-a-product/

How To Find An Audience For Your API? 78

quality product that serves a specific need. Getting input from all
over the business is one of the best ways to build this product/needs-
focused mindset.

Finding An Audience: Final Thoughts

No one knows what your customers want better than they do.
That’s why it’s critical to collect feedback via forms or an auto-
mated email sent after they sign up for an API key. It’s worth asking
them questions like:

• What brought them to your API in the first place?
• Did it solve their problem(s) in the way they hoped?
• What about the API in its current state works well?
• Is there anything about it that could be improved?

Henry Ford is often misquoted as saying that “if I’d asked my cus-
tomers what they wanted, they’d have said faster horses.” There’s
some truth to the fact that being too customer-led can be a bad
thing, but obtaining feedback can shed light on issues you might
never even have considered.

When you’re finding an audience and marketing an API to them,
this (actual) quote by Ford is worth taking to heart:

“If there is any one secret of success, it lies in the ability to get the
other person’s point of view and see things from that person’s angle
as well as from your own.”

https://nordicapis.com/why-your-api-needs-a-dedicated-developer-experience-team/

Pointers for Building
Developer-Friendly API

Products
by Thomas Bush

Some general ways to create developer-friendly APIs that stand the
test of time.

“Great API products don’t get built by mistake,” says Rahul Dighe,
the API and Platform Product Leader at PayPal. Even if you take
into account all the trending principles of API ownership — design-
first, API-as-a-Product, governance, KPIs, and more — you still
might end up with an API that’s difficult to use. So, what advice
would an API product strategist with over ten years of experience
give?

In this post, we’ll look at key pointers from Rahul Dighe’s talk at
the 2019 Platform Summit. These five insights should help you to

https://nordicapis.com/speakers/rahul-dighe/
https://www.youtube.com/watch?v=pN154fs2WgI
https://www.youtube.com/watch?v=pN154fs2WgI

Pointers for Building Developer-Friendly API Products 80

create developer-friendly APIs that will stand the test of time.

1. Know Your Developers

It should come as no surprise that building developer-friendly API
products start with knowing your developers. As a thought experi-
ment, Rahul introduces three developer archetypes who might use
PayPal’s APIs. They include a freelancer who is fresh out of college;
a payments expert, who has been in the payment space for the last
ten years; and an uninterested developer whose true interests lie
elsewhere.

When you look at these archetypes, you’ll see that developers all
have different levels of investment and experience. Not to mention,
they each have their own set of requirements, which dictates how
they interact with the APIs.

As a result, Rahul suggests you consider the usage patterns of your
primary developer archetypes when building new APIs. After all,
APIs are a means to an end and not the end itself. Some partners
might just need a single, non-APIwidget for their integration, while
others will be looking for a full API solution to migrate to from
another provider.

A particularly actionable piece of advice Rahul gives is to write
a “one-pager,” which contains all of the inputs and outputs and
core integration patterns you hope to support with your API. This
document will act as a quick reference point during the API design
process, allowing you to ensure that what you’re building will
provide the best experience to your developer audience.

Pointers for Building Developer-Friendly API Products 81

2. Be Obsessive about Naming

Rahul’s next piece of advice was the inspiration for my recent
article, 10+ Best Practices for Naming API Endpoints. He says you
should be “obsessive” about how you name your APIs. After all,
once you name an API, it stays there for a pretty long time. And
while you might be able to evolve quickly, there’s no guarantee
your developers will too.

If you want more specifics on how to do naming right, be sure to
check out the article linked above. If you’re just wondering why
naming matters, the answer is simple: it might not sound like much.
Still, the effect of redundant, inconsistent, or non-descriptive names
can quickly add up, making your APIs challenging to consume.

3. Always Stick to Your Process

By this point, many big enterprises have a tried-and-tested process
for building new APIs, that incorporates plenty of time and due
diligence. It starts with a discovery phase, where you lay out the
problem you intend to solve, which is followed by a design phase,
where you begin to think about concrete endpoints, fields, security
features, tools, specifications, and user stories. Then, you enter a
development phase, before finally launching your new API.

This process usually results in intuitive and all-round great APIs.
However, Rahul recalls getting into a discussion with a corporate
leadership team, concerning why it took an entire month to add one
field to an API. It’s easy to be swayed by external pressures like this,
but Rahul strongly believes you should stick with your guns.

As an API designer, Rahul says you’re forced to build something
that’s needed today, but will still be used five or six years in the
future. You can whisk through the discovery, design, development,
and deployment processes, but you’ll end up with a suboptimal

https://nordicapis.com/10-best-practices-for-naming-api-endpoints/

Pointers for Building Developer-Friendly API Products 82

product. Instead, stick to the approach that works, and accept that
creating or updating an API will take a little longer than others
might like.

4. Build a Complete Ecosystem

While getting a single API out can be a challenge in and of itself
in some business environments, Rahul says that APIs are just the
start, and that you can’t forget about the rest of the ecosystem. In
particular, he highlights the importance of SDKs, a reliable sandbox,
and debug-ready support staff.

Rahul believes that these little things do matter. Sure, it takes
time to put all the pieces in place, but these supporting ecosystem
assets significantly contribute to the usability of your core API
products. Importantly, you do genuinely have to care about and
maintain these assets: if you’re not careful, you’ll end up with old,
unhelpful documentation, and a box ticked somewhere on the API-
as-a-Product checklist.

5. Think API Governance

Rahul’s last piece of advice is to think about how you organize
and govern your suite of APIs. He draws attention to Conway’s
Law, which suggests that we build systems that reflect our inter-
nal organizational or communication structures. The traditional
approach to combating this — i.e. building consistent APIs, despite
having different teams work on them — is to use some kind of API
governance system. In theory, by subjecting all API product teams
to the same standards, the APIs should feel consistent.

In practice, Rahul believes that there will always be little nuances
between APIs built by different teams, which adds complexity for

https://nordicapis.com/conways-law-what-does-it-mean-for-your-api-strategy/
https://nordicapis.com/conways-law-what-does-it-mean-for-your-api-strategy/

Pointers for Building Developer-Friendly API Products 83

developers who are integrating two or more of them. To combat
this, Rahul suggests using something along the lines of the Inverse
ConwayManeuver (explained in the article above): if you’re always
going to have two related API products, have a single team be
responsible for both developer interfaces. That way, the APIs are
bound to be consistent.

Developer-Friendly API Products:
Final Thoughts

The best API products are built when you do things properly. That
starts with knowingwho your target developers are and how they’ll
use your API. Later, it means sticking to unnegotiable, tried and
tested processes and organization-wide governance standards, and
getting names right the first time around. Finally, there’s more to an
API ecosystem than just the API itself, and maintaining supporting
assets like docs, SDKs, and sandboxes is crucial.

9 Areas of Consistency
for Great Developer

Experience
by Kristopher Sandoval

To create a great experience across your API portfolio, be consistent!

Few things harm an API quite like inconsistency. Inconsistency
within an API ecosystem can frustrate and confuse even the most
experienced power users, creating a perpetuating cycle of failed
calls and incorrect assumptions.

While it’s seldom considered as its own problem, often being
lumped in by type (such as unclear error codes), the reality is that
inconsistency creates more inconsistency - if one aspect of an API
suffers from this, the rest is likely to as well.

Below are some specific API design areas where inconsistency is

9 Areas of Consistency for Great Developer Experience 85

common. We’ll consider the implications of things like inconsistent
endpoint naming, variable error codes, and spotty documentation,
and see how we can instead build more intuitive developer experi-
ences.

1. Naming and Endpoint Consistency

One of the most common consistency issues in many modern
API instances also happens to be the most encompassing - name
consistency. Name issues cover a few domains, but inconsistency
across the board can cause significant problems regardless of where
that inconsistency lives for a broad range of users. Let’s take a look
at two possible domains where this inconsistency can be a problem.

Clarity

For a public API, one of the development goals should be that
the API is easily understood. While this understanding is typically
gained through ample documentation or other educational efforts,
endpoint naming is often overlooked as a profound opportunity to
express purpose and intent. How endpoints are named and how
descriptive they are can significantly impact how the average user
understands what they’re interfacing with.

Imagine you are developing an API that remotely serves the
weather to a user. When considering a collection of endpoints,
imagine two extremes. On one side, we have an obscure version:

1 https://weatherapi.nordicapis.com/aqi10

2 https://weatherapi.nordicapis.com/tmplcl

3 https://weatherapi.nordicapis.com/usrlclctyid

These endpoints are pretty incomprehensible. They may represent
shorthand for internal function names, yet the average external

https://nordicapis.com/how-to-treat-your-api-as-a-product/
https://nordicapis.com/10-best-practices-for-naming-api-endpoints/

9 Areas of Consistency for Great Developer Experience 86

developer would likely have absolutely no idea what they do.
Perhaps they can infer a possible function, but not the whole
purpose.

Instead, let’s rename these endpoints to be more understandable:

1 https://weatherapi.nordicapis.com/airqualityindex

2 https://weatherapi.nordicapis.com/localtemperature

3 https://weatherapi.nordicapis.com/setusercity

For the average end-user, this change could be so monumental that
it unlocks understanding around the entire API, increasing self-
service capabilities.

Casing

Additionally, if a casing style is used, it should be consistent across
all endpoints. CamelCase (in which each new word is capitalized,
e.g., AirQualityIndex or airQualityIndex), Snake Case (where
underscores replace spaces, e.g., Air_Quality_Index), and other
approaches are acceptable. Still, it should be considered a best
practice to keep this style consistent. For example, if one endpoint
is AirQualityIndex, you should not also have an instance of set_-
User-City. Small variances like this, over the breadth of a service,
can ultimately result in higher complexity and less understanding.

Accuracy

Related to endpoint clarity is the relative accuracy of each endpoint.
It’s not enough to ensure that the endpoint is named consistently;
you must also ensure that it does what it says it does.

Incompatibilities often arise after multiple revisions and varia-
tions on the core codebase, especially if it is old or depends on
other libraries. For instance, let’s expand the imagined weather

https://nordicapis.com/whats-the-difference-between-versioning-and-revisioning-apis/
https://nordicapis.com/whats-the-difference-between-versioning-and-revisioning-apis/

9 Areas of Consistency for Great Developer Experience 87

API example. Our users are requesting more functionality. One
function has to do with integrating into calendar applications
to provide a snapshot of the week’s weather alongside sched-
uled activities. As you develop, you discover that one of the
endpoints, <https://weatherapi.nordicapis.com/weeklyweather>,
does not, in fact, serve the weather in a grouping for the week, but
provides average weekly temperature and precipitation.

Such unclear naming can cause significant problems for both
developers and users. For developers, especially those who did
not work on the core codebase, assumptions based around named
functionality can result in non-functional applications. Some end-
points can be relatively understandable, such as the example given
above, while others can be less understandable. Something like
<https://weatherapi.nordicapis.com/time> could imply so many
functions behind it (local time, GMT-specific time, regional time,
etc.) that it’s simply too unclear to be helpful.

2. API Design Paradigm

The API design style chosen by a provider is essential, but being
consistent with it is even more critical. It is not unheard of that an
API adopts a paradigm based upon the solution de jure but follows
that choice poorly. APIs that claim to be RESTful sometimes don’t
follow a core tenant of RESTful design, GraphQL APIs may not
allow truly transformative requests from users, and so on.

This is not only true of paradigm misalignments, either. Sometimes
the paradigm is followed, yet the internal API ecosystem is incoher-
ent or confusing. An API may push other requests to other internal
APIs, and often, these APIs could be strangely grouped (for instance,
an API that handles media transformation may also manage user
accounts).

In a RESTful paradigm, it’s not just enough to be RESTful - you

https://nordicapis.com/rest-vs-graphql-how-constraints-determine-api-style/
https://nordicapis.com/all-you-need-to-know-about-rest-api-design/
https://nordicapis.com/graphql-one-data-model-to-rule-them-all/

9 Areas of Consistency for Great Developer Experience 88

should also be RESTful and coherent across all the APIs.

It’s also important to know when not to be RESTful, when to
leverage other options, and most importantly, when to separate
a monolithic API into microservices (or vice versa). Ultimately, it
doesn’t matter what paradigm you use — if you are RESTful, be
RESTful. If you use SOAP, follow SOAP, but above all else, be
consistent. Utilizing an internal style guide (like the ones in API
Stylebook) can help ensure and enforce this consistency. If you’re
going to use a guide like this, you should insist on it and use it.
Again, above all else, be consistent.

3. Error Handling

One point of clarity that is often missed is in error handling. Too
often, error handling is dealt with by serving general error codes
with no additional information. How many times has a service
returned an error that simply says “sorry, this resource is not
found”? For the end-user, this experience is not only ineffective;
it’s frustrating.

Errors should be handled consistently, given a specific form and
function. One of the best resources for standardizing error handling
is using standard HTTP status codes. This is a great solution, as
each type of error code is delineated and understandable simply by
knowing what category these codes fall in. The standard codes are
noted below:

• 1xx — these codes deliver information, typically to confirm
receipt of the request.

• 2xx – 200 — this spectrum of codes notes that a request was
received, understood, and accepted.

• 3xx — this band of codes notes a redirection condition and
can be a tip-off that the initial request, while once accurate,
is no longer the proper method.

https://nordicapis.com/the-api-that-defied-rest-most-common-instances-of-unrestful-apis-and-what-really-matters/
https://nordicapis.com/common-cases-when-using-soap-makes-sense/
http://apistylebook.com/design/guidelines/
http://apistylebook.com/design/guidelines/
https://nordicapis.com/best-practices-api-error-handling/
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

9 Areas of Consistency for Great Developer Experience 89

• 4xx — these denote client errors, indicating bad syntax or
some other error.

• 5xx — these denote server errors from an otherwise valid
request.

Standardizing behind these code ranges and serving the correct
codes each time consistently can dramatically increase the API’s
accuracy, efficacy, and functionality and the average user flow. The
key aspect here is to ensure consistency — user errors should be
client-centric, server-errors should be in the 5xx range, etc.

4. Documentation

Documentation should never be considered an afterthought —
consistency is extremely important for quality documentation. So
what does this mean in practice?

First, ensure that your documentation is accurate. At a basic level,
documentation must reflect the actual functions, endpoints, and
facets of the API in great detail. Documentation should always
match production —it is this consistency that lends itself to accu-
racy, and thus to good documentation.

Secondly, navigation is a vital, often overlooked aspect. It’s not
just enough to have accurate documentation — developers must
be able to navigate it. One way to increase consistency here is to
think of your documentation from a scientific point of view. Break
everything first down by topics, then by functions, variations, and
finally examples. The specific structure doesn’t need to be exact —
what is most important is that if you adopt a format, stick with it.

Finally, content should be efficient. Consider the average developer
consumer — do they have time to read for an hour to understand
one function? Of course not – they depend on brevity, examples,
and efficacy. Be brief, concise, and accurate.

https://nordicapis.com/best-practices-for-creating-useful-api-documentation/
https://nordicapis.com/review-of-redoc-instant-api-documentation/
https://nordicapis.com/marketing-to-jaded-developers-101/
https://nordicapis.com/marketing-to-jaded-developers-101/

9 Areas of Consistency for Great Developer Experience 90

5. Support and Feedback

Ultimately, the API provider is separated from the developer user.
The developer consumes the API however they choose to imple-
ment it, while the provider can only assume the average use case
based on analytics and usage patterns. To prevent this, support
processes and feedback channels are vital.

Support can take a few forms. For some APIs, live support is
very helpful. These APIs often fall within the services industry —
eCommerce support systems, troubleshooting ticket systems, etc.
Ongoing support not only forms the best support for the average
user; it can also inform developers as to the current status of the
API, consistently appearing problem areas, and unmet needs of the
consumer.

Other APIs may suffer from this type of live support. Evergreen
APIs that serve a single particular function, such as an API that
serves local time data, may necessarily be limited to just that
function. After all, if an API only serves time, it doesn’t really
matter whether a consumer wants a timer function, a scheduling
function, etc. — that’s not what the API is for. That said, there
may be cases where the API is serving erroneous data, not syncing
properly to certain devices, or simply not working. In such cases,
asynchronous support such as error reporting contact forms, error
reporting endpoints, etc., can serve a vital function.

With all of this said, no mode of support or feedback lives past the
first loss of consistency. When looking at the sum total of avenues
for communication, a user can quickly fall down a black hole — a
ticket submitted here, an email sent there, all dependent upon the
developers routinely utilizing this data and using the systems on
offer. If a developer notes that a system of feedback is available,
it’s functionally useless if the developer then does not proceed to
use that system. Too often has a provider created a mailbox with
an email like “feedback@coolapi.com” only to never check the

9 Areas of Consistency for Great Developer Experience 91

feedback for the rest of the API lifecycle.

This is especially important when noting that there are many
types of support and feedback mechanisms. Suppose an API has
a public function as well as internal endpoints. In that case, it
may be the correct choice to have different support and feedback
apparatus choices depending on who the targeted audience is. In
such situations, accuracy and consistency are even more important.

Finally, the mode of communication is only as consistent as the fo-
cus and approach. Especially at the enterprise level, communication
is essentially a form of public relations. As such, all who engage in
communication channels should have at least some sort of training,
understanding, or skill set around providing support. A consistent
user experience backed by a trained professional familiar with the
core product will promote an excellent developer experience. A
failure in consistency isn’t going to reflect on the singular poor
experience but the support platform.

Ultimately, what is important here is that some channel is provided,
and that the channel is clearly demarcated, made available, and
utilized in core development.

6. Change and Versioning

Perhaps the most crucial area to ensure consistency is within your
API’s various technical aspects — this includes how you evolve your
service. Versioning is a change management method that seeks to
ensure that critical deployments, interaction and usage shifts, and
altered paradigms are effectively distributed and implemented to
all users.

Versioning should be consistent and communicated properly. Inef-
fective versioning can be extremely harmful to the average API and
its consumers.We’ve discussed this at length before, andwe suggest

9 Areas of Consistency for Great Developer Experience 92

reading through our collected thoughts concerning API versioning
best practices and change communication.

Second, having a consistent methodology behind sunsetting and
deprecating APIs and API versions is incredibly important. We’ve
also discussed this before, summarizing the core problem as thus:

“Deprecation and sunsetting terms are some of the most important
policies to communicate to developers. Your communication here
will not only secure your current API, but if you’re migrating to
something else, will likely ensure its success as well – users only
trust providers who communicate. Effective, smart sunsetting and
deprecation isn’t just good for your code, it’s good for your users,
the API space, and the industry at large.”

7. Security

Security is another area where consistency is incredibly important.
Having consistent endpoints with consistent security standards and
baseline monitoring and response methods is incredibly important.
Every small failure of consistency here can compound and open
more vulnerabilities that you may not even know exist.

One common security issue is allowing different access points for
different user classes. While this most often happens within the
context of an exposed “test server,” this can also happen with test
endpoints for new functions.When those endpoints are created and
left open once their usefulness has expired, this only creates a risk
of ingress.

Additionally, any security choice made throughout the API should
apply to the API in totality. Things like rate limiting are great to
prevent denial of service attacks, but if those limits don’t apply
to elevated credentials, then you’re creating a massive flaw in
your security. In such a system, the second an elevated credential

9 Areas of Consistency for Great Developer Experience 93

is usable by a threat actor, you’ve made a situation where your
massive security solution does not exist for the direct threat actor.

Ultimately, security is not a single fix. “Security” in an API is not
like locking a single door and calling yourselves secure — instead,
it’s like inspecting a two-mile-long castle wall for weaknesses,
erosions, or high points that can be traversed. It’s an active process
of inspecting for weakness, however minor, and then addressing
those weaknesses to balance the user experience with restricted
access.

8. Authentication and Authorization

One major consistency issue is in the processing of user authoriza-
tion and authentication. While this specific area of concern covers
a handful of domains, we’ll more specifically discuss a few general
types here.

Firstly, the use of API keys and the storage of those keys should
be consistent both in process and location. API keys can be ex-
tremely powerful, and without a proper strategy, they could be
inadvertently exposed, given far too much power, or even used
for entirely incorrect purposes. Keys should be provisioned based
upon a consistent set of standards, and they should only be made
for access to a limited set of resources for a specific purpose. There
should be no “skeleton key.” Most importantly, these keys should
have a consistent revocation and expiration system to ensure that
no key lasts forever, and that keys can be adequately cycled and
distributed.

Secondly, when any account is closed or terminated, you must
properly handle the associated credentials within a set expiration
process. Improper expiration of certificates is a significant source
of ingress into systems from unauthorized users, as they, when
paired with poor API key handling, can leave valuable sources

9 Areas of Consistency for Great Developer Experience 94

of interaction completely open. Add on to this the fact that these
credentials are often overlooked as sources of insecurity (given that
they were, at one time, trusted), and you’ve got a perfect storm
resulting in a threat actor flying “below the radar”.

9. Platform Consistency

One final point of consistency is the unification of the API ex-
perience from the perspective of documentation and specification.
When developing an API, unless the specification is used to create
the documentation outright, there is a possibility that the output is
going to differ from the input. While this is typically minor and
can be fixed by an attentive developer, the reality is that these
differences often propagate through multiple versions, resulting
in documentation that must go through an overhaul to be even
remotely usable and valuable.

It’s also possible that if the specification is used to create the output
API, but this process is done at the start of a series of developments,
that the end output will still be mismatched. The worst part of this
scenario is that the output is different without apparent cause; it is
more likely that this scenario plays out without it being obvious to
the developers than the former scenario.

At all times, developers should strive to ensure that their public docs
and statements in specificationmatch the actual deployed instances
and that the ethos and processes are reflected adequately. This
includes ensuring that the numerous diverse outputs which inform
the user match the inputs, but it also includes matching the stated
goal and purpose of the API are reflected in the actual functions. It’s
not ok for an API to state that its purpose is to do something, and
once the user enters the API, it’s unclear exactly how (or even if) it
does this – that is the worst possible scenario for user experience.

9 Areas of Consistency for Great Developer Experience 95

Be Consistent: Final Thoughts

Inconsistency across an API can drive inefficiency, confusion, and
failure. With all of this in mind, the solution is simple — be
consistent. Even if you adopt your own standards for style, naming,
error codes, etc., be uniform across your developer platform.

As long as everything is done in a consistent manner, even propri-
etary solutions can be quickly learned and understood within the
context of the rest of the body of work. As long as any inconsistency
exists, the API will forever be lacking clarification, which decreases
usability and self-service capabilities.

Nordic APIs Resources
Visit our eBook page to download all the following eBooks for free!
They’re also available for a small fee on LeanPub and Amazon
Kindle.

API-as-a-Product: In this eBook, we cover tips to help you create
a working business model around a specialized public API.

How to Successfully Market an API: The bible for project man-
agers, technical evangelists, or marketing aficionados in the process
of promoting an API program.

Identity and APIs: Discover the techniques to secure platform
access and delegate access throughout a mature API ecosystem.

API Strategy for Open Banking: Banking infrastructure is decom-
posing into reusable, API-first components. Discover the API side
of open banking, with best practices and case studies from some of
the worldâ€™s leading open banking initiatives.

GraphQL or Bust: Everything GraphQL! Explore the benefits
of GraphQL, differences between it and REST, nuanced security
concerns, extending GraphQL with additional tooling, GraphQL-
specific consoles, and more.

The API Economy: APIs have given birth to a variety of unprece-
dented services. Learn how to get the most out of this new economy.

API Driven-DevOps: One important development in recent years
has been the emergence of DevOps, a discipline at the crossroads
between application development and system administration.

https://nordicapis.com/api-ebooks/
https://leanpub.com/u/NordicAPIs

Nordic APIs Resources 97

Create With Us

At Nordic APIs, we are striving to inspire API practitioners with
thought-provoking content. By sharing compelling stories, we aim
to show that everyone can benefit from using APIs.

Write: Our blog is open for submissions from the community. If you
have an API story to share, please read our guidelines and pitch a
topic here.

Speak: If you would like to speak at a future Nordic APIs event or
LiveCast, please visit our call for speakers page.

https://nordicapis.com/create-with-us/
https://nordicapis.com/create-with-us/
https://nordicapis.com/call-speakers/

Nordic APIs Resources 98

About Nordic APIs

Nordic APIs is an independent blog and this publication has not
been authorized, sponsored, or otherwise approved by any com-
pany mentioned in it. All trademarks, servicemarks, registered
trademarks, and registered servicemarks are the property of their
respective owners.

Nordic APIs AB ©

Facebook | Twitter | Linkedin | YouTube

Blog | Home | Newsletter

http://facebook.com/nordicapis
http://twitter.com/nordicapis
https://www.linkedin.com/company/nordic-apis
https://www.youtube.com/user/nordicapis
http://nordicapis.com/blog/
http://nordicapis.com/
http://nordicapis.com/newsletter/

	Table of Contents
	Supported by Curity
	Preface: What Is Developer Experience?
	Developer-Facing Tools
	Considering The Developer Journey
	What To Expect in our eBook, Developer Experience
	Enjoy Developer Experience!

	API Onboarding Is Broken (And How To Fix It)
	Show, Don't Tell, (With Code Samples)
	Support vs. Peer Support
	The Documentation Paradox
	Measure & Iterate
	API Onboarding: Final Thoughts

	Everything You Need To Know About API Discovery
	Guide To API Discovery
	Types Of API Discovery
	Tips For API Discovery
	API Discovery: Final Thoughts

	5 Ways to Make Your API More Self-Service
	1. Decrease Time To First Call (TTFC)
	2. Provide A Sandbox For Testing
	3. Instant Account/API Key Issuance
	4. Engage With Marketplaces
	5. Comprehensive, Easily Navigable Documentation
	Self-Service APIs: Final Thoughts

	Best Practices For Creating Useful API Documentation
	Understanding The Audience For API Documentation
	The Essential Components Of API Documentation
	Best Practices For API Documentation
	Best Practices For API Documentation: Final Thoughts

	7 Best Practices for API Sandboxes
	What Is an API Sandbox?
	Seven Short `n' Sweet Suggestions for Sandbox Success
	API Sandboxes: Final Thoughts

	What Does a Bad Developer Experience Look Like?
	8 Developer Experience Anti-Patterns to Avoid
	Bad Developer Experience: Final Thoughts

	Why Time To First Call Is A Vital API Metric
	A Deeper Dive Into TTFC
	From Time To First Call to Active User
	Exploring ``First Call Motivators''
	Improving Your Time To First Call
	Time To First Call: Final Thoughts

	Developer Marketing for API Companies
	Are You Developer-Focused or Developer-Enabled?
	Find the Real Competitor to Your API
	Help Developers Solve Their Problems
	Developer Marketing: Final Thoughts

	Why Your API Needs a Dedicated Developer Experience Team
	Understanding the Difference: DevRel and DX
	Why Developer Experience?
	Why the Shift?
	You Need a Dedicated Developer Experience Team
	4 Main Responsibilities of a Developer Experience Team
	DX Team: Final Thoughts

	Tips on Creating Outstanding Developer Experiences
	DX For Onboarding
	DX For Developer Dashboards
	DX For Developer Advocates
	DX For Developer Communities
	DX Time and Task Management
	KPIs to Improve DX
	Building Outstanding DX: Final Thoughts

	How To Find An Audience For Your API?
	What Does Your API Do?
	Carry Targeted Messaging Throughout
	Where to Find Your Audience?
	Is Your Organization as Invested as You Are?
	Finding An Audience: Final Thoughts

	Pointers for Building Developer-Friendly API Products
	1. Know Your Developers
	2. Be Obsessive about Naming
	3. Always Stick to Your Process
	4. Build a Complete Ecosystem
	5. Think API Governance
	Developer-Friendly API Products: Final Thoughts

	9 Areas of Consistency for Great Developer Experience
	1. Naming and Endpoint Consistency
	2. API Design Paradigm
	3. Error Handling
	4. Documentation
	5. Support and Feedback
	6. Change and Versioning
	7. Security
	8. Authentication and Authorization
	9. Platform Consistency
	Be Consistent: Final Thoughts

	Nordic APIs Resources

