

API as a Product
Tips for Running an API-centric SaaS
Business

Nordic APIs

© 2021 - 2022 Nordic APIs

Contents

Supported by Curity . i

Foreword: The Potential of API-as-a-Product ii

What is API-as-a-Product? 1
API-as-a-Product Consumption and Monetization Models 3
The Future of API-as-a-Product 5

8 Unexpected Challenges of Running an API-as-a-Product 7
1. It’s More Than A Technical Challenge 8
2. Realizing You Need an API Product Manager 9
3. Developers Will Spam Your Free Trial 9
4. Developers Are Resistant to Paying 10
5. Providing Ongoing Support is Challenging 10
6. Lowering Barriers To Adoption 11
7. Your Real Competition May Surprise You… 11
8. Build It, And They (Might Not) Come 12
Final Thoughts: The Real Product is Trust 13

What to Consider When Building Your API Strategy . . . 14
The API-First Approach 15
The API Economy . 15
Challenges and Risks . 16
API-as-a-Product . 17
Focusing on the Core Business 18
Providing Seamless User Experience 18
Summary . 19

CONTENTS

6 API-Driven Startups Shaking Up Silicon Valley 21
1. FalconX . 22
2. Flinks . 22
3. Spruce . 23
4. Evervault . 24
5. Nylas . 25
6. Segment . 25
Final Thoughts . 26

5 Ways to Generate Direct Revenue With APIs 27
Direct vs. Indirect Monetization 28
5 Methods of Direct API Monetization 28
API Monetization Strategy 32

The Ultimate Guide to Pricing Your API 33
First Things, First. How Do Businesses Monetize Their

APIs? . 34
Three Developer Usage Pricing Models 35
Original Benchmark Data 36
Include a Free Testing Plan 37
Tailor These Benchmarks for Your Business with The

“Three Cs” . 38
The Takeaways . 41

Calculating the Total Cost of Running an API Product . . 42
Assessing Development Time 43
Deployment and Maintenance Costs 46
Advocacy and Marketing 48
Evaluating our Totals . 51

13 Important Metrics for API Companies 52
Infrastructure API Metrics 53
Application API Metrics 56
API Product Metrics . 58
Business and Growth . 61
Conclusion: Track the Right API Metrics 62

CONTENTS

Pointers for Building Developer-Friendly API Products . 63
1. Know Your Developers 64
2. Be Obsessive about Naming 64
3. Always Stick to Your Process 65
4. Build a Complete Ecosystem 66
5. Think API Governance 66
Final Thoughts . 67

How To Treat Your API as a Product 68
Consumer . 69
Investment . 69
Roadmaps and Lifecycles 70
Reversing the Developer-Consumer Relationship 71
Consumer Friendly . 72
Define and Adopt Business Roles 73
Assume Your API Will Become an Public API 73
Final Thoughts . 74

Why Your API Needs a Dedicated Developer Experience
Team . 75
Understanding the Difference: DevRel and DX 76
Why Developer Experience? 76
Why the Shift? . 77
You Need a Dedicated Developer Experience Team . . . 78
4 Main Responsibilities of a Developer Experience Team 80
Final Thoughts . 82

What Qualities Make a Great API Product Owner? 83
Why API Product Ownership is Important 84
Developer vs. Product Manager vs. Evangelist — When

Worlds Collide . 84
Hiring Internally vs. Externally 91
Outsourcing to Jump-Start 91
Conclusion . 92

6 Ways to Market Your Niche API 93

CONTENTS

1. List Your API on Directories 94
2. Create Valuable Content 94
3. Make the Most of Social Media 96
4. Host and Attend Events 97
5. Use Launch Announcements 98
6. Reach Out Directly . 98
Don’t Forget to Make Devs Happy! 99

Nordic APIs Resources . 100

CONTENTS i

Supported by Curity

Nordic APIs was founded by Curity CEO Travis Spencer and has
continued to be supported by the company. Curity helps Nordic
APIs organize two strategic annual events, the Austin API Summit
in Texas and the Platform Summit in Stockholm.

Curity is a leading provider of API-driven identity management
that simplifies complexity and secures digital services for large
global enterprises. The Curity Identity Server is highly scalable, and
handles the complexities of the leading identity standards, making
them easier to use, customize, and deploy.

Through proven experience, IAM and API expertise, Curity builds
innovative solutions that provide secure authentication across
multiple digital services. Curity is trusted by large organizations
in many highly regulated industries, including financial services,
healthcare, telecom, retail, gaming, energy, and government
services across many countries.

Check out Curity’s library of learning resources on a variety of
topics, like API Security, OAuth, and Financial-grade APIs.

Follow us on Twitter and LinkedIn, and find out more on curity.io.

https://curity.io/?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity
https://curity.io/resources/api-security/?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity
https://curity.io/resources/oauth?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity
https://curity.io/resources/financial-grade?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity
https://twitter.com/curityio
https://www.linkedin.com/company/25049399/admin/
https://curity.io/?utm_source=nordicapis&utm_medium=ebooks&utm_campaign=aboutcurity

Foreword: The Potential
of API-as-a-Product

by Bill Doerrfeld

At Nordic APIs, we’ve been tracking the emergence of many API
trends throughout the years. On our blog and at our conferences,
contributors have time and time again described new ways to
generate value from APIs.

However, few subjects encapsulate asmuch interest as the API-as-a-
Product concept. By opening up specialized software functionality
through an API, companies can commoditize data and operational
components on a per-call basis. Commoditized web APIs help soft-
ware teams avoid reinventing the wheel for common functionally.
This could be anything from payments to geolocation, artificial
intelligence, weather data, log-ins, messaging, and more. You may
be familiar with the phrase “there’s an API for that.”

I’m excited about this format, as it’s arguably a more on-demand,
real-time incarnation of Software-as-a-Service. The API-as-a-
Product trend isn’t just smoke and mirrors either — many startups
are beginning to treat their API as a core offering due to its
potential for scalability and explosive growth. Take the story of
the boot-strapped Car Registration API, which went from zero to
three million calls in under two years. Some API-first companies
have even IPO-d in recent years.

Due to their nature, APIs have a lot going for them:

• They fit the startup agenda. Arguably, APIs appeal to the
concepts of specialization and disruption.

• They are platform-agnostic. Using HTTP as a delivery
mechanism, any developer user can integrate APIs into their

https://nordicapis.com/operating-a-real-world-api-from-zero-to-3-million-calls/

Foreword: The Potential of API-as-a-Product iii

application, regardless of what platform or language they’re
using.

• They can be self-service. If set up correctly with awesome
documentation and testing environments, API portals do a lot
of the upfront work, requiring minimal human support.

• APIs are standardized: Developers are familiar with APIs.
API products typically adopt a REST style and serve JSON
over HTTP. OpenAPI Specification (formerly Swagger) has
also made major crossroads to document these services.

However, we must acknowledge that it takes substantial effort
to build and maintain a functional, self-service API-as-a-Product.
There’s a lot to consider. You must balance openness with charging
for access. Providers must find their secret sauce of freemium,
rate limiting, charging per call, or subscription pricing. You must
support standard protocols and track emerging communication
styles. It also helps to know your developer users well, monitor
platform use, and optimize to find the correct model.

And, designing the program is only the beginning. API-as-a-
Products require unparalleled developer experiences and high
stability. The provider may also experience unexpected challenges,
such as identifying spam users and thwarting black hats. Or, the
API may struggle to get off the ground and attract a developer
foothold necessary to sustain a business.

As Editor-in-Chief of the Nordic APIs blog, I’ve worked with our
writers and contributors to explore the API-as-a-Product subject
from many angles. As a result, our community has produced a ton
of knowledge on treating an API as a product.

In this eBook, I’ve collated some of our most helpful insights to
help you begin your API-as-a-Product journey. Chapters touch on
all the concerns outlined above. I’ve tried to include high-level
perspectives but also nitty-gritty details. (For example, one chapter
involves calculating API-as-a-Product maintenance expenses, with
fine-grained pricing estimates). Even if your API doesn’t adopt a

Foreword: The Potential of API-as-a-Product iv

public model, I believe it still helps to consider how you can benefit
from taking a product perspective to integration.

Keep in mind this is a very new, nuanced subject. Software integra-
tion styles are changing, as are the standards for API design. This
evolution, paired with industry consolidation and new abstraction
layers, could significantly affect the overall strategy API products
take to compete in the future market. So, take this text with a grain
of salt and always stay updated with the forces at play.

With that said, happy reading, and the best of luck on your API
journey!

By the way, we at Nordic APIs are big supporters of APIs. We’re
always happy to connect and hear your story. If you’d like to share
what you’ve learned throughout your API journey, our blog is open
for submissions. You can view our submission guidelines on our
Create With Us page.

– Bill Doerrfeld

Editor in Chief, Nordic APIs
Doerrfeld.io
@DoerrfeldBill

https://nordicapis.com/create-with-us/
http://nordicapis.com/
https://www.doerrfeld.io/
https://twitter.com/DoerrfeldBill

What is API-as-a-Product?
by Kristopher Sandoval

API-as-a-Product is a growing concept in the software development
sphere. As such, it bears some further definition and clarification.
So, just what is API-as-a-Product? What are some ways we can
monetize this approach? And, where is this trend heading?

An API-as-a-Product is a type of Software-as-a-Service that mone-
tizes niche functionality, typically served over HTTP. Tech compa-
nies with API products often adopt a freemium model and utilize
strategies like rate limiting to enable subscription tiers.

An API may exist alongside a primary offering or as a product in its
own right. For example, if a business is developed first as a physical
product or a Business-to-Business (B2B) offering, the API may be
a premium extension. The API-business logic is instead the core
offering for a growing number of new companies.

This relationship has resulted in a new paradigm of API thought

https://nordicapis.com/calculating-the-total-cost-of-running-an-api-product/
https://nordicapis.com/how-to-grow-and-profit-using-a-freemium-api-monetization-model/
https://nordicapis.com/everything-you-need-to-know-about-api-rate-limiting/
https://nordicapis.com/api-first-companies-the-next-generation/

What is API-as-a-Product? 2

and design – API-as-a-Product. This model implies an API is core
to the business logic, driving most of the business value. For API-as-
a-Products, the API is not just the delivery mode; it is the product
itself.

API-as-a-Product is roughly synonymous with an API-driven
Software-as-a-Service (SaaS) offering, wherein the API powers
the SaaS itself and the business logic around it. API-as-a-Product
is the natural evolution of the B2B landscape, but instead of
creating bespoke offerings for specific instances, API-as-a-Product
essentially says, “here’s what we can do — how you integrate is up
to you.”

Some good examples of this type of product offering are as follows:

• Stripe: A payment processing and eCommerce platform,
Stripe offers anAPI to facilitate online commerce interactions.
This API is not a business storefront itself — there’s no
“Stripe Store” where you can sell and buy goods like Amazon.
Instead, Stripe enables this commerce through platform
offerings designed to ease overhead.

• Twilio: Twilio is, at its core, a communications facilitation
platform. Designed to allow agents and customers to commu-
nicate on a wide variety of platforms, Twilio is not in itself a
chat platform but is instead a connection platform. This core
product offers communication benefits to companies who do
not want to create their own communication channels and
methods but would like to integrate proven channels into
their existing infrastructure.

• Mailchimp: Mailchimp is a marketing automation solution
that offers a productized solution to unified marketing efforts
across different channels. This is an excellent example of
a product that “levels up” existing efforts while opening
new avenues for creation — while marketing campaigns may
exist in the entity utilizing Mailchimp, it nonetheless offers a

https://nordicapis.com/9-powerful-b2b-apis/

What is API-as-a-Product? 3

significant enough improvement in these efforts that it’s best
considered a distinct product.

API-as-a-Product Consumption and
Monetization Models

API-as-a-Product can be monetized in various ways. We’ve dis-
cussed this before, but it bears repeating. Monetization is highly
dependent on the specific type of API product offering in question
— for example, technical API products might charge per integration
or per a certain amount of data transfer, whereas commerce or
payment APIs might charge as a portion of revenue or through
subscription models. The type and model of monetization are
variable, and as such, API developers have relatively free range to
choose the best monetization model for their specific use case.

Freemium/Tiered Monetization

A prevalent model in the API space is the freemium or tiered
monetization strategy. In this model, developers offer essential API
functions for free with some limitations. Limitations can include
time-bounded free trials, a certain number of allowed calls (akin to
rate limiting), or even a completely free option for non-enterprise
users subsidized by enterprise clients.

Ultimately, this model is based on the concept of accelerated cost for
accelerated usage. A certain amount of balance must be employed
in this model to ensure that what is provided in the free offering
does not reduce demand for the premium offering while ensuring
that the free option is indeed worth interacting with.

https://nordicapis.com/5-ways-to-generate-direct-revenue-with-apis/
https://nordicapis.com/5-ways-to-generate-direct-revenue-with-apis/
https://nordicapis.com/how-ecommerce-businesses-are-leveraging-the-api-economy/
https://nordicapis.com/10-payment-apis-accept-credit-cards-bank-accounts-bitcoin-and-more/
https://nordicapis.com/7-types-of-api-business-models/
https://nordicapis.com/how-to-grow-and-profit-using-a-freemium-api-monetization-model/

What is API-as-a-Product? 4

Bulk Cost Model

This model goes by several names depending on how revenue is
generated from the bulk cost process. Pay as you Go is a bulk cost
model in which the number of API calls made has an associated
cost that is then passed onto the requesting entity. This costing can
be for individual calls (usually assigned a premium cost) or bulk
calls (typically discounted related to the individual call cost). For
example, a bulk cost monetization model might say “each call costs
99 cents” and “1000 calls cost 500 dollars.”

While this model allows the customer to control their costs in a
highly granular fashion, it can also obscure the end cost if they
do not pay enough attention or model their costs accurately. This
can be mitigated partially through proper modeling techniques or
estimates from the provider, as well as clarifications on how each
call is monetized (for instance, if replays are part of the API, does
this count as a new call, or a repeat of an already paid call?).

Subscription Models

A subscription model is a cost-capped version of the Pay as you Go
model and typically has a time period in which the subscription
is active (for example, subscriptions may be weekly, monthly, or
yearly). These models often have a top-level tier for utilization
(e.g., 100 dollars per week and up to 1,000 calls) and typically offer
discounted costs for any overage outside the subscription level.

Unit Costing

This model utilizes discretely defined units to charge utilization.
An API provider might charge per unit of use for infrastructure
(e.g., number of GB utilized, number of discrete processor cycles
employed, etc. — common with solutions like AWS), but can also

What is API-as-a-Product? 5

charge per “unit” of process (typically called an “instance”), e.g., “5
Docker instances” or “3 users of the API”.

A version of this unit costing model is called the “per seat” model
in which each user has a set maximum number of calls they can
employ and a time-limited period of access — in essence, you are
buying a seat at the table for the solution.

Revenue Sharing

In this model, API providers claim a portion of the revenue gener-
ated from the API’s use. In a product sense, this is akin to something
like Google’s advertising systems, in which a site can integrate
advertisements can claim a certain percentage of the revenue, but
not the revenue in whole.

For something like a commerce app, this may come as a premium
charge on top of the item’s base cost or product. Integrating an
eCommerce solution may mean that each product sold for 10
dollars results in 10 cents in revenue being shared with the API
company, which, at scale, can add up significantly, even if there’s
no “direct cost” to the company implementing the API. This can
actually be a significantly better implementation for many compa-
nies, as the cost paid is part of the revenue generated, which mainly
eliminates “idle cost,” where you are paying for a subscription that
does not generate any value.

The Future of API-as-a-Product

As the web has moved to the microservice paradigm, thoughts
around API development have similarly moved away from creating
a single, catch-all solution for all use cases to develop extensible
frameworks that allow the creation of solutions. The idea is simple
—why try and solve every use case when you can create a low-level

https://nordicapis.com/4-ecommerce-industries-that-hinge-on-api-integration/
https://nordicapis.com/whats-the-difference-between-monolith-and-microservices/

What is API-as-a-Product? 6

toolset for the problem owner to make their own solution? The end
result is usually more tailored to the desired outcome.

With this movement towards framework solutions, the idea of API-
centric business has become ever more critical as a core business
logic. APIs are created for mass consumption, and as such, the new
paradigm thought pattern has shifted from “what problemdoes this
solve” toward “what problems can this framework enable solutions
for.”

Of course, this movement has resulted in increased expectations for
API products. APIs can no longer just provide a simple function —
they require excellent developer experience, security, and reliability.
For a real-world metaphor, the top car manufacturers in the world
don’t simply make cars that go from A to B — they make cars that
do so while offering top-of-the-line features and qualities that make
them more attractive. The same is true of APIs as products.

https://nordicapis.com/6-api-driven-startups-shaking-up-silicon-valley/
https://nordicapis.com/6-api-driven-startups-shaking-up-silicon-valley/
https://nordicapis.com/top-expectations-for-api-products-in-2021/
https://nordicapis.com/top-expectations-for-api-products-in-2021/

8 Unexpected Challenges
of Running an

API-as-a-Product
by Bill Doerrfeld

Many software entrepreneurs are interested in creating a working
business around an API. As such, the API-as-a-Product trend has
blossomed in recent years, with more and more startups beginning
to embrace an API as a core SaaS business offering. This is exciting,
as a self-service API could generate passive income for the provider.

However, it may not be as “passive” as you think. Sustaining an
excellent API-as-a-Product requires a good deal of ongoing support.
There are alsomany open-ended questions to answerwhen forming
your business offering. For example, how should API calls be
priced? How should we design the service for a quality developer
experience? How can we evolve the API without introducing

8 Unexpected Challenges of Running an API-as-a-Product 8

breaking change? What challenges should we anticipate as usage
scales?

For our API-as-a-Product LiveCast, we brought in Alan Glicken-
house, IBM, and Ed Freyfogle, Co-founder of OpenCage, to take
a more in-depth look at the API-as-a-Product trend. In the event,
we explored how to make a working business around an API and
realized some unexpected realities of owning an API-as-a-Product
in production.

Below, we’ll review these unexpected challenges that arise with
API-as-as-Product. Of course, not every API product will encounter
every one of these issues, but all should be aware. So consider these
tips to overcome them to create a modern, profitable, developer-
friendly business.

1. It’s More Than A Technical
Challenge

“An API product is an API offering made available to a target
market to satisfy a developer customer’s needs,” describes Glicken-
house. Having a standardized, machine-based delivery mechanism
enables the rise of automation and overall digitalization. But creat-
ing a working, self-service API model is harder than it seems.

“It’s really hard work,” said Freyfogle. API providers are often naive
in believing that providing an API is merely a technical challenge.
“If you can get it to work, that’s enough.” In reality, your business
challenges can significantly outweigh the technical effort.

This is, in part, due to a general knowledge gap. While there are
many shared standards around API formats, design, and protocols,
fewer shared business practices exist within this new economy.
“There’s lots of very good technical advice, there’s very good
discussion about newest technology, but not nearly as much about
business side of things,” said Freyfogle.

https://nordicapis.com/events/livecast-api-as-a-product/

8 Unexpected Challenges of Running an API-as-a-Product 9

2. Realizing You Need an API Product
Manager

Due to this condition, many API products enter the market without
a product manager or a lucid product mindset. This may be because
the product is a solo venture or supported by a lean team.

A traditional product manager identifies a target market, under-
stands customer needs, and generates a package to suit those needs.
Though API teams could benefit greatly from an API Product Man-
ager, Glickenhouse finds they don’t often loop one in.” This is a role
too many businesses try to do without,” describes Glickenhouse.

Taking a product management viewpoint can help you consider the
API lifecycle and estimate ongoing costs. In the process, you may
discover complementary API management or gateway tools that
could help host and secure the API offering, offloading potential
maintenance work.

3. Developers Will Spam Your Free
Trial

Ed Freyfogle has spent over five years running OpenCage, a
straightforward geolocation REST API powered by open data.
Throughout running his API-first SaaS business, he’s noticed a
weird phenomenon — “people will go through extreme lengths to
not become customers.”

Software developers want to try before they buy. Thus, having a
freemium account or free trial is standard for SaaS subscription
models. But, Freyfogle has found that users routinely abuse these
free trials. Instead of upgrading to a paid tier, some users will rig
up hundreds of free trial accounts. For the API owner, policing all

https://nordicapis.com/qualities-make-great-api-product-owner/
https://nordicapis.com/qualities-make-great-api-product-owner/

8 Unexpected Challenges of Running an API-as-a-Product 10

this can take a toll. “It’s frustrating, and takes a lot of time,” said
Freyfogle.

4. Developers Are Resistant to
Paying

Developers want to pay only for what they use. Yet, Freyfogle has
noticed a stark contradiction: developers want complete pricing
predictability, but they are terrible at estimating usage. Within
software developer culture, people are “deeply resistant to paying
for anything,” says Freyfogle.

Interestingly, in practice, Glickenhouse finds that the bulk of API
business potential doesn’t even lie in direct charging, but in indirect
models. “This is the real API monetization,” he describes. For
example, in some affiliate models, a developer receives payment,
acting as an agent for the provider. Therefore, it may behoove
API providers to consider what alternative methods or partnerships
they could leverage outside of direct monetization.

API providers must consider usage limits, price subscription plans
accordingly, and consider how they bundle endpoint access per
developer account. With all this in mind, figuring out the financial
terms around an API product and proving its success in production
may take some time.

5. Providing Ongoing Support is
Challenging

The burden of providing support may come as a surprise. Especially
for small teams, it can be challenging to provide ongoing feedback
to support a functional integration. This is worsened by the fact that

https://nordicapis.com/5-indirect-benefits-of-building-api-first/
https://nordicapis.com/5-indirect-benefits-of-building-api-first/

8 Unexpected Challenges of Running an API-as-a-Product 11

many people don’t read the docs. “Build it and they won’t read it,”
joked Freyfogle.

Or, developers may approach your service who have little program-
ming experience. “Definitely don’t assume all users will be highly
experienced engineers,” said Freyfogle.

Global API services may also encounter language barriers. Though
English is the lingua franca of software development, many users
won’t feel comfortable asking questions in English andwill struggle
to communicate with you. To help solve this issue, Freyfogle rec-
ommends eliminating jargon and anglo-centric cultural knowledge
from your support materials.

6. Lowering Barriers To Adoption

Too often, developer experience isn’t front and center for API
products. There should be “no barriers to adopting an API product,”
stresses Glickenhouse. Yet, excellent self-service developer experi-
ence requires forethought and a good deal of construction.

A sleek API portal will include reference documentation, testing
environments, code samples, code snippets in multiple languages, a
getting started guide, an authentication guide, and SDKs for multi-
platform support. By lowering the entry bar to meet the developer
wherever they are, you can increase usability and adoption rates.

7. Your Real Competition May
Surprise You…

The Amazon, Microsoft, and Google behemoths of the world could
easily build out an API and kill your product in an instant, right?
Well, in practice, Freyfolge hasn’t found an issue here. It’s easy for

8 Unexpected Challenges of Running an API-as-a-Product 12

a startup to differentiate itself. Instead, the real competitor is often
the developer user, saying, “oh, I could build this myself.”

Developers may question the value of your offering and assume
they can build it on their own. This is especially common if your
service is a layer around open-source data, as is the case with
OpenCage.

“A big part of the argument is convincing them why they shouldn’t
build it themselves,” said Freyfogle. To get through to potential
users, he recommends stressing how maintenance is much harder
than development. Make time and cost savings clear, and create
clean developer experiences for quick, convenient use. Once devel-
oper users realize the difficulty in constructing their own API, they
will more likely return to your service.

8. Build It, And They (Might Not)
Come

Many fledgling API products suffer from a lack of promotion.
“Don’t assume you only must make [the API] available,” said
Glickenhouse. “You need to encourage usage, and really drive
consumption, and iterate the product,” he described.

API-as-a-Products must not only promote themselves but fight for
attention against competing services. To stand out, there are many
methods to increase the exposure for your API. For example, you
could arrange a Product Hunt launch and offer perks to new users.
You could profile your service in API directories and marketplaces.
Or, improving developer center SEO and publishing content for
non-IT visitors could help appeal to new audiences.

https://nordicapis.com/6-ways-to-market-your-niche-api/
https://nordicapis.com/utilizing-product-hunt-to-launch-your-api/
https://nordicapis.com/api-discovery-15-ways-to-find-apis/

8 Unexpected Challenges of Running an API-as-a-Product 13

Final Thoughts: The Real Product is
Trust

We have hardly scratched the service of what it takes to sustain
a functional API product. As more companies come to rely on
third-party API dependencies, there will likely be a greater need
to meet SLAs and compliances. Additionally, as more and more
APIs are breached, security and access management is surging in
importance. Auditing your surface area for security vulnerabilities
is thus vital to maintaining a stable API product.

As you can see, running a public API-as-a-Product is not as easy as
it seems. It’s not just about writing anOpenAPI spec and generating
some docs. In practice, the bulk of your time may be spent in
entirely non-technical areas to support the product.

Thinking from the developer’s perspective, some common require-
ments include: Does it solve my problem? Can I depend on it? Is the
price reasonable? With all this in mind, what you’re really selling
is a commitment to maintain the API. “The real product is trust,”
said Freyfogle.

https://nordicapis.com/api-expert-exposes-common-api-performances/
https://nordicapis.com/redefining-api-discovery-with-compliance-and-security/
https://nordicapis.com/testing-owasps-top-10-api-security-vulnerabilities/

What to Consider When
Building Your API

Strategy
by Tanel Tähepõld

In the last decade, the number of businesses that want to become
more digitalized has multiplied. As part of this, the business strat-
egy needs to include more digital strategy. The two core channels
of a digital strategy have been web and mobile. The new trend is to
leverage application programming interfaces (APIs) to support or
enable a digital strategy.

85% of businesses consider web APIs and API-based integration
fundamental to their business strategy and continued success. How-
ever, before starting with the digital strategy, we must have a well-
defined business strategy and a set of goals. With an API-first
development approach, we must have a valid business case before

https://www.forbes.com/sites/falonfatemi/2019/04/30/3-keys-to-a-successful-api-strategy/
https://www.forbes.com/sites/falonfatemi/2019/04/30/3-keys-to-a-successful-api-strategy/

What to Consider When Building Your API Strategy 15

building APIs to provide more value to your customers. A business
strategy, customer success, and API strategy need to be aligned and
work together to achieve the business goals.

The API-First Approach

Many companies start with building web or mobile applications.
Considering today’s development approaches, they also need to de-
velop some APIs to allow web and mobile applications to consume
the data. In most cases, the resulting APIs are not correctly built
and tested and should not be used by third-party companies or for
integration purposes.

An alternative route would be to build the API first and then build
your web or mobile applications on top of that API. This enables
us to design an API and use it for your apps to make it more real-
world and developer-friendly. When building internal applications
on top of APIs with developers in mind, we are laying down the
foundations for others to build on. With an API-first approach, we
can ensure that we are building a product of tomorrow. This process
creates reusable building blocks, future-proofing the business with
assets that have a more extended expiration date.

The API Economy

The notion “API Economy” describes an economy where compa-
nies make available their (usually internal) business assets or ser-
vices in the form of web APIs to third parties to provide additional
or new business value through the creation of new asset classes.
There are several motivators for making internal assets or services
available to third parties. The most common of them are:

1. Trying to reach a wider audience and make the organization’s
brand more visible.

https://www.gartner.com/smarterwithgartner/welcome-to-the-api-economy/

What to Consider When Building Your API Strategy 16

2. Enabling external sources of innovation.
3. Creating new revenue sources

The API economy’s value is already very well documented, and
many large companies have leveraged their API well enough to
generate over 50% of their revenue through APIs. Good examples
are eBay, Salesforce, and Expedia, who respectively make 60%, 50%,
and 90% of their income through APIs or app stores. APIs allow
companies to expand into markets they may never have previously
considered.

Challenges and Risks

With the drastic growth of public APIs, we see more data breaches.
In fact, according to Gartner analysts, API abuse will be the largest
source of data breaches by 2022. The problem is that security prac-
tices have not developed simultaneously and are often a secondary
consideration for the developers shipping new applications.

Commonly, development teams work independently of their secu-
rity teams, making it very complicated for the latter to effectively
test or validate API security policies, leaving their organization
vulnerable to an attack.

To succeed with the APIs, we need to treat them as “first-class
citizens” and avoid the temptation of merely creating ad-hoc APIs
only as a temporary or quick “plumbing” for web and mobile apps.
We need to understand the full API lifecycle, and it needs to be part
of the API strategy. A clear overview of the API design, proper
documentation, and management process is a must-have when
building an API strategy.

https://hbr.org/2015/01/the-strategic-value-of-apis
https://www.linkedin.com/pulse/end-beginning-api-economy-mark-o-neill/

What to Consider When Building Your API Strategy 17

API-as-a-Product

In my opinion, APIs must be treated as full-fledged products with
a designated Product Manager and API team to support them. If
we want to take full advantage of APIs, then “build and forget”
or “build and they will come” approaches will not work. When
building APIs, we should advance step by step and enable APIs
for different stakeholders and audiences in the following order:
internal teams, partners and customers, then third-party developers.
Let’s look at how this should progress.

1. Internal Teams

The initial goal is to enable your internal teams to build new
functionality and applications on top of your APIs. Even if internal
teams use the APIs, we must have proper API documentation in
place as we want our teams to work efficiently. Internal teams must
be able to consume the APIs as a self-service product.

2. Partners and Customers

Your business partners and customers are the next stakeholders
that we can provide new value via APIs. Your partner API could
integrate with a customer’s HR application to streamline employee
information or with a CRM to improve their task management
processes.

3. Third-Party Developers

The final step is to make your APIs available to the general public. If
by now, you have not thought about API documentation, developer
experience, or API security, then it is too late, and you are about to
fail.

What to Consider When Building Your API Strategy 18

Focusing on the Core Business

You should always focus on your core business and leverage your
strengths. I firmly believe that APIs are the best way to extend the
market by allowing third parties to build specific value offerings
on top of the existing core products. In my book, the best examples
are Salesforce and Shopify; both developed a stable and robust core
product. They then opened their platform to third-party developers
to build additional value on top of their core services and offerings.

The idea is simple; Salesforce and Shopify opened their APIs
to third-party developers, who now have access to hundreds of
thousands of potential customers. In return, developers are building
new applications for their customers, which Shopify or Salesforce
wouldn’t pursue because it is either not their core business or
the size of the market is not big enough. At the same time, both
platforms collect a small commission fee from each developer. The
actual product that Shopify or Salesforce provides is not their API,
per se, but access to their customer base.

Providing Seamless User Experience

APIs are great for providing server-to-server integrations with
external applications. Although, if developers need to build inte-
grations that provide a user interface, we end up with fragmented
user experience and different-looking user interfaces. To unify the
user experience, we would need to provide building blocks for
developers to build integrations that look and feel like part of your
application.

It is not a coincidence that again, we can look to Salesforce and
Shopify for inspiration. Salesforce provides Lightning Design Sys-
tem, which includes the resources to create user interfaces consis-
tent with the Salesforce design language and best practices. Shopify

https://www.lightningdesignsystem.com/
https://www.lightningdesignsystem.com/

What to Consider When Building Your API Strategy 19

has also provided a user interface package called Polaris that
allows developers to use similar design components as available
for Shopify internal teams. This will enable them to embed their
application into the Shopify user interface, so the user doesn’t even
realize that they are using some third-party application. Providing
easy-to-use building blocks lets developers concentrate on building
logic rather than on pixels, experience, interactions, and flows.

On top of that, both software companies have introduced app stores
where developers can promote their applications, and users can
easily install them to their Salesforce or Shopify account. This
approach allows Salesforce and Shopify to build their core product.
At the same time, they have a competitive advantage over their
competitors as there are hundreds of applications that solve niche
problems and make their platforms attractive to customers.

Summary

APIs will play a significant role in building digital and business
strategies in the coming years. If you want to take full advantage
of APIs, you need to manage your entire API lifecycle, as the “build
and forget” or “build and they will come” approaches will not work.

When starting with the API strategy, the first step is to map out
what primary value you want to provide through your APIs and
who your customers are. You also need to acknowledge that your
customers also usually have multiple stakeholders: the decision-
maker and the developer who will be implementing your API with
their systems.

Think about the developer experience; your API must be well-
documented and intuitive to speed up the integration process. Ease
of use can become a decision point if your competitor provides the
same value but with faster integration.

https://polaris.shopify.com/

What to Consider When Building Your API Strategy 20

Make sure that you are building a product of tomorrow and future-
proofing the business. The goal is to create solid building blocks
that can be reused for decades to come.

6 API-Driven Startups
Shaking Up Silicon Valley
by J Simpson

In mid-2020, a few eyebrows were raised when Daily.co, an API-
provider that lets users quickly and easily integrate video chat into
their websites, raised $4.6 million in venture capital during a round
of fundraising. But this is just one of many cases of late. APIs
have been changing the business world in all manner of unexpected
ways in recent years.

To say that we are living in unprecedented times would be an un-
derstatement. The business world was already reeling and quaking
for most of the 21st Century, in light of increasing globalization, a
never-ending onslaught of new technologies, and the unexpected
demise of several previously-monolithic industries.

Luckily, we’ve seen a rise in new industries, as entrepreneurs find
new ways to leverage emerging technology into new businesses.

https://techcrunch.com/2020/05/04/daily-co-raises-4-6m-video-chat-api-service/

6 API-Driven Startups Shaking Up Silicon Valley 22

Considering the power and versatility of APIs, it’s unsurprising that
they’re powering a whole new industry of API-driven products.

Let’s look at some of the API-driven startups that are shaking up
Silicon Valley.

1. FalconX

Blockchain technology might not be garnering as many headlines
as it was a few years ago, but that doesn’t mean it’s lost any
of its potential. In fact, blockchain has been slowly, but-steadily,
integrating into the business world.

FalconX bills itself as the most advanced digital asset trading
platform globally. It offers realtime assets to help people make the
best cryptocurrency investments. That’s not as easy as it sounds.

Cryptocurrency moves through a number of decentralized ex-
changes, which makes it hard to keep track of the going rate. That
makes FalconX a blessing for cryptocurrency traders who’ve been
wanting to move into realtime trading. It also addresses some of
the other major concerns facing the cryptocurrency industry, like
ensuring a company’s ethics.

It also means that FalconX’s API could be a blessing for anyone
who wants to integrate realtime cryptocurrency insights into their
projects. Investors seem to be excited about this, as FalconX raised
$17 million during fundraising as of May 2020.

2. Flinks

Connecting apps with financial data isn’t as simple or as straight-
forward as it might seem. Several APIs have arisen to fill this
need. Flinks is a firm favorite among developers. The Flinks API

https://falconx.io/
https://techcrunch.com/2020/05/13/falconx-raises-17m-to-power-its-crypto-trading-service/
https://flinks.io/

6 API-Driven Startups Shaking Up Silicon Valley 23

and the Connect UI lets you authenticate financial transactions
by integrating realtime Digital KYC, Account Authentication, and
Transaction Histories.

Flinks also supports multi-factor authentication, account selection,
consent pages, or custom tagging.

To understand how Flinks works, check out some of their use cases.
You can see how they handle user verification, for instance, return-
ing Transactions, AccountNumbers, Balance, and other information
commonly found on a voided check, reducing the amount of time
it takes to reduce the time it takes to verify a transaction.

Flinks has garnered $14 million in funding, so far. Clearly, they’re
on to something and providing a service of real use.

3. Spruce

Real estate is big business, which means big money. Any industry
that generates that kind of revenue will have a rich ecosystem of
products trying to capitalize on it. That means developers need
realtime data. Yet, many real estate assets are still handled via
paperwork. Spruce is set to change that.

“Instead of using local offices with manual communication and
manual processes, we provide [our clients] with API’s that allow
them to scale effectively and to provide great digital experiences
to their customers,” Spruce CEO and cofounder Patrick Burns told
TechCrunch.

Spruce isn’t aiming to provide real estate services on their own.
Instead, they’re focusing on simply providing realtime real estate
data to homeowners, brokers, and lending institutions. That’s how
they’ve managed to be so effective. They’re simply offering the
infrastructure that empowers real estate professionals.

https://docs.flinks.io/docs/use-cases
https://betakit.com/flinks-looks-to-expand-us-presence-with-16-2-million-series-a/
https://spruce.co/
https://techcrunch.com/2020/05/21/spruce-is-eliminating-the-drudgery-of-real-estate-and-has-29m-more-from-scale-to-make-sales-easy/
https://techcrunch.com/2020/05/21/spruce-is-eliminating-the-drudgery-of-real-estate-and-has-29m-more-from-scale-to-make-sales-easy/

6 API-Driven Startups Shaking Up Silicon Valley 24

SpruceAPI comes inOpenAPI formatwith several endpoints specif-
ically for real estate. They’ve got specific calls for Quotes, Orders,
Title Reports, or Settlement Statements. All of these queries
return assets in a standard JSON format. For Spruce, realtime data
is one of their big selling points. Also, the API lets its platform
integrate with other financial software.

Spruce has raised more than $19 million in two rounds of fundrais-
ing at the time of writing. They recently added another $29 million
in backing from Scale Venture Partners. The real estate industry
appears to be ripe for change.

4. Evervault

With so much money to be made with data, not to mention the
ways it can be used for even more nefarious purposes, data privacy
is obviously important. Evervault is an API-driven startup based
out of Dublin that lets developers integrate data privacy easily and
effectively.

Evervault CEO Shane Curran feels that a true data privacy solution
isn’t yet available. Today’s data privacy laws, he argues, are bad for
consumers and businesses alike. Evervault is built around the idea
of ‘privacy cages.’ This prevents anyone but the data owner from
decrypting the data. The privacy cages are modular, meaning they
can be adapted easily, over time, as the security landscape shifts.
Evervault’s data privacy also relies on mathematical principles
rather than judicial approaches like GDPR, CCPA, or ePrivacy.

Some investors see the potential in this application. Evervault
raised $3.2 million in venture capital from a number of high-profile
investors, like Sequoia, Kleiner Perkins, and Frontline.

https://spruce.co/api/v4/
https://nordicapis.com/asyncapi-vs-openapi-whats-the-difference/
https://techcrunch.com/2020/05/21/spruce-is-eliminating-the-drudgery-of-real-estate-and-has-29m-more-from-scale-to-make-sales-easy/
https://techcrunch.com/2020/05/21/spruce-is-eliminating-the-drudgery-of-real-estate-and-has-29m-more-from-scale-to-make-sales-easy/
https://evervault.com/
https://techcrunch.com/2019/10/16/evervault-raises-3-2m-from-sequoia-kleiner-for-an-api-to-build-apps-with-privacy-baked-in/
https://techcrunch.com/2019/10/16/evervault-raises-3-2m-from-sequoia-kleiner-for-an-api-to-build-apps-with-privacy-baked-in/
https://techcrunch.com/2019/10/16/evervault-raises-3-2m-from-sequoia-kleiner-for-an-api-to-build-apps-with-privacy-baked-in/

6 API-Driven Startups Shaking Up Silicon Valley 25

5. Nylas

Email integration might not seem that exciting until you realize
that nearly every app on Earth needs it. Nylas is an API that lets
you integrate email, contacts, and calendars into any application.

Nylas offers a full range of communication tools via its API. These
are all returned in a standard REST format, meaning you can GET,
PUT, POST, and DELETE. Responses are returned in a standard
JSON format.

Nylas works similarly to Twilio or Stripe. It lets developers add
email connectivity with just a few code lines so they can focus
on developing their apps. It essentially functions as an adapter
between the app and the most popular email providers.

Adding email, contact, and calendar connectivity might seem like a
simple utility, but Nylas’ popularity suggests otherwise. It’s already
being used by high-profile clients like Comcast, Hyundai, Salesloft,
and News Corp. CRM integration is one of its most powerful and
popular applications. Clearly, investors see the potential in this
email API. Nylas has raised over $30 million in two rounds of
fundraising. This windfall paves the way for Nylas to pivot to
providing B2C services, as well.

6. Segment

Businesses operating without a data strategy by this stage in the
game are essentially fumbling in the dark. Big Data lets businesses
know exactly what their customers want, leaving those without it
to make educated guesses and hope for the best.

Segment is an API that offers comprehensive business intelligence
business tools for gathering business data for marketing purposes,
letting business owners and developers focus on building products

https://www.nylas.com/
https://nordicapis.com/5-excellent-email-apis-and-which-of-them-to-choose/
https://segment.com/

6 API-Driven Startups Shaking Up Silicon Valley 26

and developing their business. Segment collects data from all of
your sales and marketing channels and your other digital assets like
apps, websites, and servers. This data is collated alongside insights
from CRM software, payment systems, and internal databases.
This provides a powerful, customizable dashboard. It also lets
you route your data from virtually anywhere to any number of
popular business software tools, from Google Analytics, Mixpanel,
KISSMetrics, and over 300 more.

Segment has raised over $283 million in venture capital to date.
Segment was one of the earliest APIs that became a product in
their own right. Perhaps it might be better to consider them an API
success story and an example of what’s possible when APIs meet
the business world.

Final Thoughts

APIs are quickly becoming an accepted business practice. They’re
even becoming businesses in their own right. If data is the new
oil, as the headlines claim, these API-driven startups are some of
the first boomtowns. We expect to see many more as the world
continues to adjust and adapt to today’s data-driven climate.

5 Ways to Generate
Direct Revenue With APIs
by Kristopher Sandoval

One of the first questions an API team has to wrestle with is how
to self-sustain the service. While there are typically various free
options for hobbyists, APIs at scale must sustain themselves and
generate a financial return if viewed as products.

Revenue generation is a significant component of any business
in the API space and entails various potential applications. These
models can be boiled down to two general types — direct and
indirect.

Below we’ll discuss one of those types — direct monetization.
We’ll look at five different ways to monetize APIs and consider
how these models are different in practice. We’ll also look at some
example API products for revenue ideas and identify whether these
practices are as user friendly as they are effective.

5 Ways to Generate Direct Revenue With APIs 28

Direct vs. Indirect Monetization

Before discussing specific monetization methods, let’s consider the
fundamental differences between API business model categories.
While we will focus on direct monetization in this piece, indirect
models can be equally valuable.

Conceptually, the difference comes down to the form of value gen-
erated. Direct monetization is easy to classify — direct payments,
typically either in credit or cash, is the format one would expect.
Indirect monetization is quite a bit different. It delivers value in
non-directly-convertible cash analogs, such as brand valuation,
marketing value, easier partner programs, operational streamlining,
and so forth.

Direct monetization, however, results in a cash analog. Even if
there’s no actual money handed from one person to another, the
value is directly convertible, with credit, balance transfer, or in-
lieu-of-cash payments being relatively common. This piece will
specifically cover direct monetization schemes.

5 Methods of Direct API
Monetization

1. Direct Billing

Direct billing is — as you would guess — the most direct mone-
tization method on this list. Direct billing monetizes the API calls
themselves, turning the API into a sellable, meterable product. This
pay-per-call model can be lucrative, but it comes with the downside
of being somewhat restrictive for new users.

Without a freemium option, direct billing makes it hard for an API
product to capture early success. Products need a critical mass of

https://nordicapis.com/5-indirect-benefits-of-building-api-first/
https://nordicapis.com/5-indirect-benefits-of-building-api-first/
https://nordicapis.com/creating-a-brand-guide-for-your-api/
https://nordicapis.com/how-apis-are-enabling-innovation-in-retail/
https://nordicapis.com/how-to-build-a-successful-api-partner-program/
https://nordicapis.com/the-brilliance-of-spotify-internal-apis-to-mitigate-payments/

5 Ways to Generate Direct Revenue With APIs 29

users before they are “successful,” and this critical mass is often
the source of new growth. However, APIs are unique in that
adopting any third-party API is a risk for the developer consumer.
Integrations require a necessary amount of trust, which can only
be built through production use.

Direct billing is perhaps the most impactful of these models. It’s
highly lucrative, but without a low barrier for new users, pay-per-
call can stifle early adoption. For this reason, product managers
should simultaneously employ other methods of direct API revenue
generation.

2. Freemium Model

One way to resolve the downsides of direct billing is by adopting
a freemium model. This model, which has been popular in the soft-
ware world for years, is less concerned about the total conversion
of user-to-value. Instead, it targets specific paid users to have those
paid users subsidize the free users.

In a freemium scheme, free users are allowed access to “lite”
versions of core functionality. Many freemium APIs grant open
access yet include heavy rate liming and time delays. Complex
functions and the lifting of restrictions, however, are reserved for
paid customers.

Freemium models allow API products to build a critical mass
more effectively without losing potential users. Adopters are more
willing to entertain the risk of utilizing a new API if that foray has
zero cost outside of their own time. The hope is they will eventually
convert to a higher paid tier.

The downsidewith freemiummodels is that theymust carefully bal-
ance free service provision with revenue generation. For example,
offering one free endpoint from a 100-function catalog is probably
not the right balance for an average consumer. Thus, striking
the right balance between giving services away to entice new

https://nordicapis.com/how-to-grow-and-profit-using-a-freemium-api-monetization-model/
https://nordicapis.com/everything-you-need-to-know-about-api-rate-limiting/
https://nordicapis.com/marketing-to-jaded-developers-101/

5 Ways to Generate Direct Revenue With APIs 30

users and giving away everything point-blank must be carefully
implemented by the API implementer.

3. Enterprise Pricing

Eventually, API products seek not to monetize single users, but
rather to monetize entire organizations. This B2B scheme is often
referred to by another name — enterprise pricing.

Enterprise accounts may utilize calls that are heavily demanding
of the API and require excessive resources. Such partner scenarios
are necessarily more expensive than users who may only issue a
single call each use period. In such a dichotomy, the most equitable
and profitable monetization mode is to shift that expense to the
enterprise user to subsidize the free users.

API products often include enterprise plans within tiered pricing
models (Freemium, Basic, Premium, Enterprise, etc.). When it
comes to user experience and monetization, tiered plans can offer
the best of both worlds. Businesses have more tolerance for pricing
models as they are accustomed to paying for partner IT services.
And, you avoid the direct billing aversion concern with average
users.

4. Ad Revenue Sharing

While the previous methods monetize the API consumer, ad rev-
enue sharing monetizes end-user attention. Ad revenue sharing is
a great monetization approach, as it monetizes use by leveraging
marketing efforts to market to a broader userbase.

In this system, API providers utilize advertising networks to gen-
erate revenue. This can take a couple of forms. One of the most
common is embedded ads on consumption portals, allowing devel-
opers to retain a percentage of the ad revenue.

https://nordicapis.com/how-to-make-a-self-descriptive-enterprise-api/

5 Ways to Generate Direct Revenue With APIs 31

Ad revenue sharing is fundamentally free for the API consumer. For
this reason, ad revenue sharing is preferred by some developers over
a freemium model, as user attention can be rationed more easily
than cash. Of course, ad revenue sharing does not apply to all types
of APIs. Such a model best fits eCommerce advertising, affiliate
networks, or product-heavy sales channels.

5. Upsell

Within an upsell model, API use is positioned as a bonus when sell-
ing amore comprehensive platform. In this scenario, the integration
typically supplements a core experience. A SaaS application may
offer a basic account that grants access to a web interface — the
core application. Yet, the account must upgrade to a premium tier
to export data from the application with a REST API.

An upsell model differs from the idea of direct billing in that the
upsell API itself is not a standalone product. Instead, the API, or
perhaps a more advanced version of the API, is locked only for B2B
utilization. It’s part of a package. For example, a data aggregator for
mobile application statistics may enable access to basic data for free
and provide integration abilities at added costs.

While this seems like a freemium model by another name, the
distinction is that, in freemium models, the “upsell” opens access
to additional resources rather than avoiding artificial restrictions
on the core API.

The danger of an API upsell is that it can often be misleading what,
exactly, is allowed for a non-premium user. Open API access is
almost an expectation these days, especially for paid SaaS services.
Realizing API integration is locked behind a labyrinthine system of
upgradesmay cause frustration for developers. If adopting an upsell
model, SaaS providers should do so carefully and transparently
communicate these terms.

https://nordicapis.com/programming-sponsored-content-how-apis-have-transformed-advertising/

5 Ways to Generate Direct Revenue With APIs 32

API Monetization Strategy

The way you monetize an API can have just as much impact
on developer onboarding as the service’s discovery, usability, and
marketing initiatives. A poorly designedmonetization strategymay
generate significant income in the short-term, but limit a userbase
before sustaining long-term growth.

On the inverse, the correct monetization approach can generate
significant income while providing the financial backing to grow
the underlying services and expand core offerings.

How an API provider chooses to monetize is dependent on a variety
of factors, including the total cost of running an API product. Each
provider should consider the above revenue options as helpful tools
to craft the perfect implementation.

https://nordicapis.com/redefining-api-discovery-with-compliance-and-security/
https://nordicapis.com/tips-on-creating-outstanding-developer-experiences/
https://nordicapis.com/api-lifecycle-operations-stage-marketing-your-api/
https://nordicapis.com/calculating-the-total-cost-of-running-an-api-product/

The Ultimate Guide to
Pricing Your API

by Lindsey Kirchoff

Guest Post by RapidAPI with Benchmark Data on 1,800 APIs

There’s big money in the API economy. But the rise of this new
economy begs some key pricing questions. How do these companies
actually make money from their API? What are the best practices
for pricing? Are there any industry standards for API pricing or are
we still in a wild west phase?

As an API hub housing over 7,500 APIs [at time of writing],
we at RapidAPI found ourselves uniquely positioned to answer
these questions. We’ve determined benchmark quotas, prices, and
overage fees associated with the four most common API business
use cases. The result? Everything you need to know to price
your API effectively for hobbyists, small businesses, and enterprise
developers. Use these benchmarks, along with the three C’s of your

The Ultimate Guide to Pricing Your API 34

business (cost, competitors, and content), to help guide your API
pricing.

First Things, First. How Do
Businesses Monetize Their APIs?

There are threeways that companiesmonetize APIs: data collection,
product adoption, and developer usage.

Monetization
model

Definition Example APIs

Data Collection Collect data
from third party
apps to use in
product design
or advertising
efforts.

When
consumers log
into a third
party app with
Facebook, the
social media
company’s API
learns what
apps consumers
use and how
they use them.

Product
Adoption and
Customization

Allows
developers to
build custom
integrations to
increase value
and make it
harder to
migrate to
competitors.

When
developers
automate
commands and
processes with
the Slack API, it
becomes trickier
for them to
migrate to a
competing chat
software.

The Ultimate Guide to Pricing Your API 35

Monetization
model

Definition Example APIs

Developer
Usage

Charge
developers
directly for API
calls and
requests.

The Imgur API
charges
developers to
upload and
download
images from
their online
gallery.

The vast majority of APIs charge developers directly for calls and
requests. This developer usage pricing model is what we’ll be
focusing on for the majority of the article.

Three Developer Usage Pricing
Models

Developer usage models typically fall into three categories: fixed
quotas, pay-as-you-go, or overage pricing. A pay-as-you-go struc-
ture means that developers pay for each individual call. A fixed
quota model allows developers to purchase a fixed number of calls
per month, but they cannot exceed the quota. Lastly, the overage
model allows a developer a fixed number of calls, but charges a
small overage fee if the developer exceeds the number of calls.

To illustrate the differences between the three models, here are
some sample pricing plans for an image storage API.

Pay As You Go Fixed Quotas Overage Model
$0.01 per
download

500 downloads /
month

250 downloads /
month + $0.01
per additional
download

The Ultimate Guide to Pricing Your API 36

Pay As You Go Fixed Quotas Overage Model
$0.05 per upload 100 uploads /

month
50 uploads /
month + $0.05
per additional
upload

Each of these three models has its pros and cons:

Pay As You Go Fixed Quotas Overage Model
- Pricing scales
linearly with
activity

- Predictable
pricing

- Predictable
pricing

- Pricing scales
for larger apps

- Predictable
revenue

- Predictable
revenue

- Revenue is
unpredictable

- More revenue
from low
volume
developers

- App is never
shut down

- Pricing varies
monthly for
developer
(harder to
budget)

- App shuts
down after
quota is reached

- Miscommuni-
cation around
overages

While eachmodel has its pros and cons, we recommend the overage
model. The overage model allows the predictable pricing of the
fixed quota plan, but there’s also the scaling advantages of the pay-
as-you-go model. Plus, with overages, a developer’s app will never
go down. As long as you communicate your overage model clearly
to developers, we recommend this model.

Original Benchmark Data

Most APIs on RapidAPI follow the overage pricing model. We
focused this original benchmark data on 1,800 public paid APIs.

The Ultimate Guide to Pricing Your API 37

These have four options: a free limited testing plan, a hobbyist
developer plan, a small business plan and an enterprise plan.

We weighted the average plan price, overage fee and the quota by
the number of subscribers that the API had. Here’s what we found.

Free Hobbyist Small
Business

Enterprise

Monthly
Subscrip-
tion Plan
Price

$0.00 $9.08 $76.00 $370.00

Overage $0.08 $0.01 $0.007 $0.02
Quota(calls
per
month)

64,326 688,991 4,051,181 16,120,060

While every API is different, these benchmarks are a good place
to start when setting your API prices. Based on this data, we
recommend starting with the following plan prices as a rule of
thumb:

• Limited free plan
• Hobbyist: $10 - $20 base plan price
• Small Business: Approximately $90 - $100
• Enterprise: $150 or more but varies widely

While this data helps by providing numerical context, it also
provided a larger strategic insight.

Include a Free Testing Plan

Developers like to try before they buy. This is common advice,
but for good reason. In fact, according to our data, developers are
3x more likely to subscribe to a paid API with a free tier (aka
freemium API) than an API with only paid plans.

https://nordicapis.com/how-to-grow-and-profit-using-a-freemium-api-monetization-model/

The Ultimate Guide to Pricing Your API 38

As you can see from our chart above, even though freemium APIs
make up 23% of the 1,800 APIs sampled, they have over three times
the number of developer subscribers than paid APIs.

Tailor These Benchmarks for Your
Business with The “Three Cs”

These numbers are a helpful place to start, but it’s important to
apply them in the context of your own industry. As you review
your own business, look at the three “Cs” of API pricing:

The Ultimate Guide to Pricing Your API 39

• Cost: How much does it cost you (the provider) to fulfill a
call? What are the business expenses that you incur?

• Competitors: How are other industry players charging? Are
you in a crowded space with many alternatives or a less busy
vertical?

• Content: What exactly are you offering with an API request?
How valuable is each individual call or endpoint?

The goal with asking these questions is to put your API in context.
Which “C” drives your pricing strategy? Here are some examples
from our marketplace:

Business
Example

Example APIs

Cost-driven
pricing

Shipping API This is an
industry with
fewer
competitors.
Each shipping
API provides a
similar
service/content.
The prices are
high and
depend on
outside vendors.
We recommend
pricing to
account for
these outside
factors.

The Ultimate Guide to Pricing Your API 40

Business
Example

Example APIs

Competitor-
driven
pricing

SMS API This industry is
very
competitive,
where multiple
providers
provide similar
offerings. The
costs are fixed
per call with
tight margins.
We recommend
investing in
branding, and
pricing based on
competitors.

Content-driven
pricing

Business Data
API

Each API call
provides very
rich business
intelligence. The
costs are
minimal and the
content is
specialized
information
with little
competition. We
recommend
similar pricing,
but with a lower
quota for this
API.

The Ultimate Guide to Pricing Your API 41

The Takeaways

As you move forward with your API pricing, here are some final
thoughts to keep in mind. The overage base model seems to be the
most popular and offers the best flexibility over a fixed quota or
pay-as-you-go model. Consider adding a limited free trial plan to
increase developer adoption.

Also, when you are pricing your API, arrange it into smart pricing
tiers. We’ve found that separating your offering into a free trial,
hobbyist ($10-20), small company ($90-100), and enterprise plan
($150+) is a good way to maximize sales. Lastly, consider the busi-
ness implications of your pricing model by determining which of
the three “Cs” (content, competition and costs) drive your strategy
when pricing your API.

Calculating the Total
Cost of Running an API

Product
by Tyler Charboneau

So, you want to develop and distribute an API. Connecting people
with your services is a great way to build a user base. It’s also a
pathway to monetization. This success doesn’t come freely. The
number of monetary obligations behind running an API might
surprise some developers. Expenses — both up front and ongoing —
vary from one company to the next.

Our goal is to estimate the monthly cost of running an API. If you’re
a product owner or developer, we hope these ballpark figures will
provide some insight into your potential operating costs. This does
involve some guesstimation on our part, so take these numbers
with a little grain of salt. However, the sources of these costs are

Calculating the Total Cost of Running an API Product 43

100% legitimate. We’ll break down the various factors at play when
developing and running your API product.

Introducing Our Use Case

For the sake of our example, we’ll say our API supports 100
developer accounts, each accounting for 10,000 calls per month —
one million total API calls in the same period. This engagement
level will help form the basis of our other estimates. We’ll calculate
these costs from development to production, while including long-
termmaintenance. Let’s first tackle what we’d consider the upfront
costs associated with development.

Assessing Development Time

Probably the trickiest aspect of pricing is development, as the
API design process includes numerous contributions from multi-
ple stakeholders. You’ll have your permanent team members, but
some developmental stages may require outside consultation. Let’s
assume that we hire contractors to help conceptualize and develop
the API. We can calculate potential extra costs from here:

Research

Many important considerations going into your API.Whowill your
users be?What data or third-party integrations should be included?
These decisions will lay the groundwork for your API. They’ll also
influence how long your team will spend in the research stage.

Let’s say we hire a contract software developer full-time, and
spend three days on research. According to Glassdoor, full-time
software engineers make an average of $86,774 per year. That’s
$7,231 monthly. However, there’s more calculating to be done.

https://www.glassdoor.com/Salaries/us-software-developer-salary-SRCH_IL.0,2_IN1_KO3,21.htm

Calculating the Total Cost of Running an API Product 44

Independent contractors make approximately 50% more than their
salaried counterparts:

1. $7,231 x 1.5 = $10,847 monthly (contractor)
2. $10,847 / 30 days = $362 per diem (contractor)
3. $362 x 3 days = $1,086 (contractor cost in the research

stage)

Once you get your ideas down on paper, it’s time to start building
out your components. Because the database is so central to the API,
we’ll tackle that next.

Designing Data Structures

The database is the lifeblood of your API—the backbone of crucial
information that you serve to customers and everyday users. Build-
ing this out in the most compatible, structured fashion will drive
your API’s success. We can follow the same principles seen above
with the research stage. Design takes time, as does establishing
appropriate security measures. This can take anywhere from 5-10
days. We’ll average that out to 7.5 days for our calculations:

• $362 per diem (contractor) x 7.5 days = $2,715

Next up is prototyping, the exploratory stage of development.

Prototyping

Once your security and data structures are nailed down, it’s time
to throw experimental functionality together. This step precedes
the development of an MVP. Prototyping verifies your API’s con-
nectivity while confirming that endpoints are functional. This can
take 3-5 days:

• $362 per diem (contractor) x 4 days = $1,448

https://medium.com/yourapi/how-much-does-it-cost-to-build-an-api-925b1bf90da9
https://medium.com/yourapi/how-much-does-it-cost-to-build-an-api-925b1bf90da9
https://blog.cloud-elements.com/calculating-the-cost-of-an-api
https://blog.cloud-elements.com/calculating-the-cost-of-an-api

Calculating the Total Cost of Running an API Product 45

Making a Minimum Viable Product (MVP)

The MVP is essentially your core product, minus the bells and
whistles. This stripped API typically excludes extra features that
will eventually make it into production. Since this version is bare
bones, it’s expected to be functional before any additions come into
play. This typically takes around 5 days:

• $362 per diem (contractor) x 5 days = $1,810

Monitoring and Galvanization

These two steps go hand in hand. You’ll want to establish metrics-
based oversight of your API, to assess how traffic impacts your
overall ecosystem. You can use monitoring to strengthen your
solution. This includes identifying bottlenecks, security holes, and
more. Logging and limiting features may be baked in. We’ll also
have to create our alerts.

This step takes planning and experimentation—usually extending
our time allocation to 5-10 days (or 7.5 days on average):

• $362 per diem (contractor) x 7.5 days = $2,715

Documentation

People will be using your API, so you must make sure instructions
and use cases are laid out appropriately. These documents will
explain the ins and outs of the API. This takes roughly three days.
Technical writers typically shoulder these responsibilities. An mid-
level, in-house writer costs an average of $30 per hour, adapted
from Glassdoor’s figures. Let’s convert that rate:

1. $30 per hour x 8 hours = $240 daily

https://www.glassdoor.com/Salaries/us-technical-writer-salary-SRCH_IL.0,2_IN1_KO3,19.htm
https://www.glassdoor.com/Salaries/us-technical-writer-salary-SRCH_IL.0,2_IN1_KO3,19.htm

Calculating the Total Cost of Running an API Product 46

2. $240 daily x 3 days = $720

This is a rough estimate of course, but it gives us an idea of how
costs work out during ramp up. Your initial costs make up the
largest bulk of your API-related expenses, but you’re not out of
the woods. Now, we jump into ongoing costs.

Estimated initial cost (all development items): $10,494

Deployment and Maintenance Costs

Moving from development to deployment means publicizing your
API. This includes hosting, maintenance, and other activities to help
your API reach users. We’ll break these items down one by one.

Hosting and Remote Database Costs

Your API acts as the middle man, connecting your users to your
hosting service(s). Your API’s value rests with its ability to process
these requests, time after time. Good hosting providers offer max-
imum uptime and speed. If we are fielding roughly one million
monthly calls, it’s probably best to opt for an enterprise-grade
solution (as opposed to self-hosting).

Choosing Amazon API Gateway

Luckily, Amazon API Gateway has a free tier. If our 1,000,000
monthly calls are made through a REST or HTTP API, your first
12 months will be free—as long as your calls don’t exceed that
threshold. This is great, but if you scale further, you’ll have to
pay tiered rates. If your API (knowing our monthly usage) is a
WebSockets API, your upper limit is 750,000 monthly calls—thus
pushing you into paid tiers. Here are those prices:

https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/pricing/

Calculating the Total Cost of Running an API Product 47

• REST API: $3.50 monthly per additional million (up to 333
million calls)

• HTTP API: $1.00 to $1.17 monthly per additional million (up
to 300 millions calls, regional)

• WebSockets API: $1.00 to $1.24 monthly (up to one billion
initial requests, regional). Plus $0.31 per connection minute

Note that HTTP calls are metered in 512KB increments, so any user
request over that amount will incur an additional call. This may
bump you to the next tier. Optimization is key to keeping costs
down. In a similar vein, WebSockets requests are metered at 32KB,
so any request exceeding that is processed as two (or more).

Choosing DigitalOcean for Databases

What if you choose to integrate an external database server instead
of creating your own? DigitalOcean offers a multitude of plans
depending on the memory you need. The company integrates fully-
managed MySQL, Redis, and PostgreSQL databases—on top of a
VM platform. This approach will slash (or eliminate) your in-house
development time. Costs can range widely depending on memory
and standby nodes:

• $15 to $480 monthly with zero standby nodes (memory
dependent), plus $0.022 to $0.714 hourly

• $50 to $1,600 monthly with one standby node (memory
dependent), plus $0.074 to $2.381 hourly

• $70 to $2,240 monthly with two standby nodes (memory
dependent), plus $0.104 to $3.333 hourly

Maintenance Costs

Your API is finally up and running, but it will need occasional
maintenance. Problems arise due to attacks, high traffic volumes,
and rare server outages. These problems are often handled in-house

https://www.digitalocean.com/pricing/#Databases

Calculating the Total Cost of Running an API Product 48

by DevOps engineers. These professionals make $115,666 annually,
on average—or $60 hourly when rounded up.

Provided you perform 8-24 hours of monthly upkeep, that’s a total
cost of $480 to $1,440 in monthly maintenance (when strictly using
employee salaries). Going this route, there are no added costs, like
there’d be when factoring in third-party management. Note that
you’re not paying in-house employees an additional premium atop
their salary—we’re just looking at proportional allocations.

Ideally, we can automate these processes as much as possible
to avoid excess (costly) human intervention. Even regular health
checks and tests can reduce maintenance costs, by catching any
issues before they grow in severity. Added tooling like CircleCI
and Gitlab—which may be necessary—can also incur extra costs.
As your application scales, that pricing may sharply increase.

On a grander scale, it’s estimated that total maintenance costs are
more than 50% of the complete software development lifecycle
(SDLC) costs. Maintenance can be incredibly expensive, which puts
the ownance on developers to create a solid pre-production API
product.

Estimated monthly costs (all deployment and maintenance
items): $496 to $3,684, plus database and hosting uptime premi-
ums

Advocacy and Marketing

When you have 100 developers accounts associated with your API,
you’ll need to support those individuals as best you can. Helping
developers get the most out of your API will keep them happy, and
drive further adoption. Those resulting profits will offset your input
costs. Advocates are “a bridge between the engineering team and
developer community.” These technical folks relay feedback they

https://enterprisersproject.com/article/2019/4/devops-engineer-salary
https://circleci.com/
https://about.gitlab.com/
https://community.apigee.com/articles/27576/how-much-does-your-api-cost-to-maintain.html
https://community.apigee.com/articles/27576/how-much-does-your-api-cost-to-maintain.html
https://community.apigee.com/articles/27576/how-much-does-your-api-cost-to-maintain.html
https://www.freecodecamp.org/news/what-the-heck-is-a-developer-advocate-87ab4faccfc4/
https://www.freecodecamp.org/news/what-the-heck-is-a-developer-advocate-87ab4faccfc4/

Calculating the Total Cost of Running an API Product 49

gather—eventually driving fixes and feature development down the
road.

Say you hire a few developer advocates, to really spread the word
about your product. They’re the voices of your user base, support
arms, and public speakers. Advocates make an average of $45,152
annually. If you hire a small team of three, that’s $11,288 monthly
in staffing expenses. Will a developer advocate onyl champion your
flagship API? That’s unlikely. However, much of their time will be
spent helping this product get off the ground and reach long-term
viability.

Marketing

You’ll also have to consider extra marketing costs, including staff,
contractors, or outside agencies. Your API is a product, but a unique
one, considering you’re selling to both developers and product
owners. Finding that right voice is key. Finding professionals who
can develop a sound strategy is more challenging.

It may be more cost effective to hire freelancers to achieve these
marketing goals. Full-time team members are costlier to hire. Your
marketing effort might be a short-term blitz to introduce your
API to developers—across numerous outlets. Long-term marketing
approaches might not be necessary.

For the sake of budgeting, say we hire a contractor to work part-
time (10 hours per week) to execute various marketing strategies.
This individual works for four weeks, at a rate of $40 per hour.
That’s a one-time cost of $400, unless that individual is retained
for ongoing projects.

Estimated monthly costs (advocacy and marketing): $11,688

https://www.glassdoor.com/Salaries/us-developer-advocate-salary-SRCH_IL.0,2_IN1_KO3,21.htm
https://www.glassdoor.com/Salaries/us-developer-advocate-salary-SRCH_IL.0,2_IN1_KO3,21.htm

Calculating the Total Cost of Running an API Product 50

What About Third-Party Tooling?

While our approach thus far has been decidedly in-house, there are
various third-party tools available for management. These external
solutions could be useful for the following:

• API management
• Testing
• Security services
• Performance metrics aggregation
• Monitoring and auditing

A number of services like Microsoft Azure API Management, IBM
API Connect, and RedHat 3scale provide templates for design—
plus tools to boost security and scalability. Developers can slash
development times by using these “turnkey” platforms. Speaking to
security, Google’s Apigee platform offers plenty of authentication,
SAML, and encryption options. What are the pricing breakdowns?

• Microsoft Azure API: based on our call levels, $4.20 per
million calls to ∼$147.17 monthly

• IBM API Connect: $100 per 100,000 API calls, or $1,000+
monthly

• RedHat 3scale Pro: $750 monthly

Choosing a third-party solution offers plenty of shortcuts, but those
don’t come freely. Depending on how your monthly calls grow
(assuming you’ll scale over time), these solutions can be quite
expensive—both short and long term. For example, opting for an
Azure self-hosted gateway will run you an approximate $1,000.10
monthly.

https://www.cmswire.com/information-management/15-api-management-platforms-that-make-the-short-list/
https://azure.microsoft.com/en-us/pricing/details/api-management/
https://www.ibm.com/cloud/api-connect/pricing

Calculating the Total Cost of Running an API Product 51

Evaluating our Totals

There’s no arguing that API development can be expensive. Bigger
companies may be more willing—or able—to shell out more dollars
when bringing a project into the limelight. Smaller startups will
find ways to save money to find a way to budget for an API product.
As a recap, here are our totals:

• Upfront and one-time costs: $10,894 (development plus one-
month marketing)

• Ongoing monthly costs: $11,784 to $14,972, plus added up-
time costs. Subject to increase if third-party tooling is used

The overarching challenge with this exercise is picking suitable
numbers, and including all cost-driven variables through the API
lifecycle. Companies have their own budgets and functionality
requirements. Simpler APIs will be cheaper, while running more-
robust APIs will be expensive, both in development and upkeep.
Software complexity leads to more breakages and maintenance
over time, driving expenses upward. There are a plethora of factors
at play when running an API product. However, your API product
can pay for itself many, many times over if it’s successful on the
market.

If you want to estimate your own API costs, DreamFactory offers
a simple, handy tool to help tabulate ongoing expenses.

https://calculator.dreamfactory.com/?utm_source=dfcomblog&utm_medium=blog&utm_campaign=traffic
https://calculator.dreamfactory.com/?utm_source=dfcomblog&utm_medium=blog&utm_campaign=traffic

13 Important Metrics for
API Companies

by Derric Gilling

Metrics are crucial for any product. So, what are some KPIs
that API companies should monitor? Below, we’ll cover 13 useful
infrastructure and product metrics.

When it comes to API observability and analytics, your metrics can
be thought of as forming a triangle: machine infrastructure met-
rics for stability, software processing metrics for solving business
problems, and real business metrics for managing classical business
issues.

Metrics are also dependent on where you lie in the product lifecycle.
A recently launched API will focus more on improving design
and usage while sacrificing reliability and backward compatibility.
Whereas a team supporting a well-adopted enterprise API may con-
centrate more on driving additional feature adoption per account

13 Important Metrics for API Companies 53

and give precedence to reliability and backward compatibility over
design.

Infrastructure API Metrics

1: Uptime

While one of the most fundamental metrics, uptime is the gold stan-
dard for measuring the availability of a service. Many enterprise
agreements include an SLA (Service Level Agreement), and uptime
is
usually rolled up into that. Many times, you’ll hear phrases like
triple nines or four nines. These refer to percentage figures that
measure how much uptime there is per year.

Availability % Downtime per year
99% (“two nines”) 3.65 days
99.9% (“three nines”) 8.77 hours
99.99% (“four nines”) 52.60 minutes
99.999% (“five nines”) 5.26 minutes

Of course, going from four to five nines is far harder than going
from two to three nines, which is why you won’t see five-nines
except with the most mission-critical (and expensive) of services.

With that said, certain services can actually have lower uptime
while ensuring graceful handling of outages without impacting
your service. Uptime ismost commonlymeasured via a ping service
or synthetic testing such as via Pingdom or UptimeRobot. You can
configure probes to run on a fixed interval, such as every minute, to
probe a specific endpoint such as /health or /status. This endpoint
should have basic connectivity tests such as to any backing data
stores or other services. You can easily publish these metrics on
your website using tools like Statuspage.io.

https://nordicapis.com/6-techniques-99-999-uptime/
https://www.pingdom.com/
https://uptimerobot.com/
https://statuspage.io/

13 Important Metrics for API Companies 54

More sophisticated ping services called Synthetic testing can per-
formmore elaborate test setups such as running a specific sequence
and asserting the response payload has a particular value. Keep in
mind, though — synthetic testing may not be representative of real-
world traffic from your customers. You can have a buggy API while
maintaining high uptime.

What is Synthetic Monitoring?
As the name implies, synthetic monitoring is a prede-
fined set of API calls that a server (usually a Monitoring
service) triggers to call your service. While it doesn’t
reflect real-world user experiences, it is useful to see
the sequence of these APIs perform as expected.

2: CPU Usage

CPU usage is one of the most classic performance metrics that
can be a proxy to application responsiveness. High Server CPU
usage can mean the server or virtual machine is oversubscribed and
overloaded, or it can mean a performance bug in your application,
such as toomany spinlocks. Infrastructure engineers use CPU usage
(along with its sister metric, memory percentage) for resource plan-
ning and measuring overall health. Certain types of applications,
like high bandwidth proxy services and API gateways, naturally
have higher CPU usage, along with workloads that involve heavy
floating-point math such as video encoding and machine learning.

When debugging APIs locally, you can easily see the system and
process CPU usage via Task manager on Windows (or Activity
Monitor on Mac). However, you probably don’t want to be SSH’ing
and running the top command on a server. This is where various
APM providers can be useful. APMs typically include an agent
that you can embed in your application or on the server that
captures CPU and memory usage metrics. It can also perform other
application-specific monitoring like thread profiling.

https://en.wikipedia.org/wiki/Task_Manager_(Windows)
https://support.apple.com/en-us/HT201464
https://support.apple.com/en-us/HT201464

13 Important Metrics for API Companies 55

When looking at CPU usage, it’s essential to look at usage per
virtual CPU (i.e., physical thread). Unbalanced usage can imply
applications not correctly threaded or an incorrectly sized thread
pool.

Many APM providers enable you to tag an application with multi-
ple names so you can perform rollups. For example, you may want
to have a breakout of each VMmetric, like _my-api-westus-vm0_, _-
my-api-westus-vm1_, _my-api-eastus-vm0_, etc. while having these
rolled up in a single app called _my-api_.

3: Memory Usage

Like CPU usage, memory usage is also a good proxy for measur-
ing resource utilization. CPU and memory capacity are physical
resources, unlike other metrics, which may be more configuration-
dependent. A VM with extremely low memory usage can either
be downsized or have additional services allocated to that VM to
consume additional memory. On the flip side, high memory usage
can be an indicator of overloaded servers.

Traditionally, big data queries, stream processing, and production
databases consume much more memory than CPU. In fact, the size
of memory per VM is a good indicator for how long your batch
query can take as more memory available can reduce checkpoint-
ing, network synchronization, and paging to disk. When looking at
memory usage, you should also look at the number of page faults
and I/O ops. A common mistake is configuring an application to
allocate only a small fraction of available physical memory. This
can cause artificially high page virtual memory thrashing.

13 Important Metrics for API Companies 56

Application API Metrics

4: Request Per Minute (RPM)

RPM (Requests per Minute) is a performance metric often used
when comparing HTTP or database servers. Usually, your end-
to-end RPM will be much lower than an advertised RPM, which
serves more as an upper bound for a simple “Hello World” API.
This is because a server will not consider latency incurred for I/O
operations to databases, 3rd party services, etc.

While some like to brag about their high RPM, an engineering
team’s goal should be efficiency and attempt to drive this down.
Certain business functions requiring many API calls can be com-
bined into fewer API calls to reduce this number. Common patterns
like batching multiple requests in a single request can be very
useful, along with ensuring you have a flexible pagination scheme.

Your RPM could also vary depending on the day of the week or even
the hour of the day — especially if your consumers exhibit lower
usage during nights and weekends. Some situations warrant track-
ing more fine-grained application metrics, such as RPS (Requests
per Second) or QPS (Queries per Second).

5: Average and Max Latency

One of the most important metrics used to gauge customer experi-
ence is latency. While an increase in infrastructure-level metrics
like CPU usage may not actually correspond to a drop in user-
perceived responsiveness, API latency definitely will.

However, tracking latency by itself may not provide a full under-
standing of why an increase occurred. Thus, it’s important to follow
how latency is affected by API changes, such as releasing new
versions, adding endpoints, or changing the API schema. This can
help reveal the root cause of latency increases.

https://nordicapis.com/best-practices-for-a-healthy-graphql-implementation/
https://nordicapis.com/everything-you-need-to-know-about-api-pagination/

13 Important Metrics for API Companies 57

Since problematic endpoints may be hidden when looking only at
aggregate latency, it’s critical to look at latency breakdowns by
route, geography, and other fields. For example, you may have a
POST /checkout endpoint that’s slowly been increasing in latency
over time, which could be due to an ever-increasing SQL table
size that’s not correctly indexed. However, due to a low volume
of calls to POST /checkout, this issue is masked by your GET /items

endpoint, which is called far more than the checkout endpoint.
Similarly, if you have a GraphQL API, you’ll want to look at the
average latency per GraphQL operation.

Which RESTful endpoints have higher than average latency¿‘90th-
percentile-by-endpoint.png” | absolute_url }})

We put latency under application/engineering even though many
DevOps/Infrastructure teams will also look at latency. Usually, an
infrastructure person looks at aggregate latency over a set of VMs
to ensure the VMs are not overloaded, but they don’t drill down
into application-specific metrics like per route.

6: Errors Per Minute

Like RPM, Errors Per Minute (or error rate) is the number of API
calls with a non-200 family of status codes per minute. Tracking
your error rate is critical for measuring how buggy and error-prone
your API is.

It’s essential to understand what type of errors are occurring. 500
errors could imply code errors on your end, whereas many 400 er-
rors could imply user errors from a poorly designed or documented
API. This means when designing your API, it’s vital to use the
appropriate HTTP status code.

You can further drill down to see where these errors come from.
Many 401 Unauthorized errors from one specific geographic region
could imply bots are attempting to hack your API.

https://nordicapis.com/best-practices-api-error-handling/
https://nordicapis.com/meet-hyrum-and-postel/
https://nordicapis.com/meet-hyrum-and-postel/
https://www.restapitutorial.com/httpstatuscodes.html

13 Important Metrics for API Companies 58

API Product Metrics

APIs are no longer just an engineering term associated with mi-
croservices and SOA. API-as-a-product is becoming far more com-
mon, especially among B2B companies who want to one-up their
competition with new partners and revenue channels. API-driven
companies need to look at more than just engineering metrics like
errors and latency to understand how their APIs are used (or why
they are not being adopted as fast as planned). The role of ensuring
the right features are built lies on the API product manager, a new
role that many B2B companies are rushing to fill.

7: API Usage Growth

For many product managers, API usage (along with unique con-
sumers) is the gold standard to measure API adoption. An API
should not be just error-free but should demonstrate growth over
time. Unlike requests per minute, API usage should be measured in
longer intervals like days or months to understand real trends. If
measuring month-over-month API growth, we recommend choos-
ing 28-days, as it removes any bias due to weekend vs. weekday
usage and differences in the number of days per month. For
example, February may have only 28 days, whereas the month
before has a full 31 days causing February to appear to have lower
usage.

8: Unique API Consumers

Since a month’s increase in API usage could be attributed to just a
single customer account, it’s important to measure the number of
unique monthly customers. Monitoring your Monthly Active Users
(MAU) can provide the overall health of new customer acquisition
and growth. Many platform teams correlate API MAU to their web

https://nordicapis.com/how-to-treat-your-api-as-a-product/
https://nordicapis.com/how-to-improve-api-product-analytics-for-business-users/

13 Important Metrics for API Companies 59

MAU to get full product health. If web MAU is growing far faster
than API MAU, this could imply a leaky funnel during integration
or implementation of a new solution. This is especially true when
the company’s core product is an API; such is the case for many
B2B and SaaS companies. On the other hand, API MAU can be
correlated to API usage to understand where increased API usage
came from (New vs. existing customers).

API tokens broken down by acquisition channel“weekly-active-
tokens-by-acquisition-channel.png” | absolute_url }})

9: Top Customers by API Usage

For any company focusing on B2B, tracking the top API consumers
can reveal how your API is used and where upsell opportunities
exist. Many experienced product leaders know that many products
exhibit power-law dynamics, with a handful of power users hav-
ing a disproportionate amount of usage than everyone else. Not
surprisingly, these are the same power users that generally bring
your company the most revenue and organic referrals.

This means it’s critical to track what your top ten customers are
actually doing with your API. You can further break this down
by what endpoints they are calling and how they’re calling them.
Do they use a specific endpoint much more than your non-power
users? Maybe they found an “ah ha” moment with your API,
whereas other consumers haven’t.

10: API Retention

Should you spend more money on your product and engineering
or put more money into growth? Retention and churn (the opposite
of retention) can tell you which path to take. A product with high
product retention is closer to product-market fit than a product with
a churn issue.

https://nordicapis.com/7-steps-for-building-successful-api-products/

13 Important Metrics for API Companies 60

Unlike subscription retention, product retention tracks the actual
usage of a product. While the two are correlated, they are not the
same. In general, product churn is a leading indicator of subscrip-
tion churn since customers who don’t find value in an API may
be stuck with a yearly contract while not actively using the API.
API retention should be higher than web retention. Whereas API
retention looks at post-integrated customers, web retention will
include customers who logged in but didn’t necessarily integrate
with the platform yet.

11: Time to First Hello World (TTFHW)

TTFHW is an important KPI for not just tracking your API product
health but your overall Developer Experience (DX). Especially if
your API is an open platform attracting 3rd party developers and
partners, you want to ensure they can get up and running as
soon as possible. TTFHW measures how long it takes from the
first visit to your landing page to a first transaction through your
API platform. This is a cross-functional metric tracking marketing,
documentation, tutorials, to the API itself.

API tokens broken down by acquisition channel“api-adoption-
funnel.png” | absolute_url }})

12: API Calls Per Business Transaction

While more equals better for many product and business metrics,
it’s important to keep the number of calls per business transaction
as low as possible to reduce overhead. This metric directly reflects
the design of the API. If a new customer has to make three different
calls and piece the data together, the API
does not have the correct endpoints. When designing an API, it’s
essential to think in terms of a business transaction and what
the customer is trying to achieve, rather than just features and

13 Important Metrics for API Companies 61

endpoints. A high number of calls per business transactionmay also
mean your API is not flexible enoughwhen it comes to filtering and
pagination.

13: SDK and Version Adoption

Many API platform teams may also maintain a bunch of SDKs
and integrations. Unlike mobile, where you just have iOS and
Android as the core mobile operating systems, you may have
tens or even hundreds of SDKs. This can become a maintenance
nightmare when rolling out new features. You may selectively
roll out critical features to your most popular SDKs, whereas less
critical features may be rolled out to less popular SDKs. Measuring
API or SDK version is also important when it comes to deprecating
certain endpoints and features. You wouldn’t want to deprecate the
endpoint that your highest paying customer is using without some
consultation on why they are using it.

Business and Growth

Business and growth metrics are similar to product metrics but
focus on revenue, adoption, and customer success. For example,
instead of looking at the top ten customers by API usage, you
may want to look at the top ten customers by revenue, then by
their endpoint usage. For tracking business growth, it would be
beneficial to use analytics tools that support enriching user profiles
with customer data from your CRM or other analytics services to
better understand who your API users are.

https://nordicapis.com/optimizing-the-api-response-package/
https://nordicapis.com/optimizing-the-api-response-package/

13 Important Metrics for API Companies 62

Conclusion: Track the Right API
Metrics

For anyone building and working with APIs, it’s critical to track
the correct API metrics. Most companies would not launch a new
web or mobile product without the proper engineering and product
instrumentation. Similarly, you wouldn’t want to launch a newAPI
without a way to track the right API metrics.

Sometimes, KPIs for one team can blend into another team, as we
sawwith the API usagemetrics. Also, there can be different ways of
looking at the same underlying metric. However, teams should stay
focused on looking at the right metrics for their team. For example,
product managers shouldn’t worry as much about CPU usage, just
like infrastructure teams shouldn’t worry about API retention.

Pointers for Building
Developer-Friendly API

Products
by Thomas Bush

“Great API products don’t get built by mistake,” says Rahul Dighe,
the API and Platform Product Leader at PayPal. Even if you take
into account all the trending principles of API ownership — design
first, API-as-a-Product, governance, KPIs, and more — you might
still end up with an API that’s difficult to use. So, what advice
would an API product strategist with over ten years of experience
give?

In this post, we’ll look at key pointers from Rahul Dighe’s talk at
the 2019 Platform Summit. These five insights should help you to
create developer-friendly APIs that will stand the test of time.

https://www.youtube.com/watch?v=pN154fs2WgI
https://www.youtube.com/watch?v=pN154fs2WgI

Pointers for Building Developer-Friendly API Products 64

1. Know Your Developers

It should come as no surprise that building developer-friendly API
products start with knowing your developers. As a thought experi-
ment, Rahul introduces three developer archetypes who might use
PayPal’s APIs. They include a freelancer, who is fresh out of college;
a payments expert who has been in the payment space for the last
ten years; and an uninterested developer, whose true interests lie
elsewhere.

When you look at these archetypes, you’ll see that developers all
have different levels of investment and experience. Not to mention,
they each have their set of own requirements, which dictates how
they interact with the APIs.

As a result, Rahul suggests you consider the usage patterns of your
primary developer archetypes when building new APIS. After all,
APIs are a means to an end and not the end itself. Some partners
might just need a single, non-APIwidget for their integration, while
others will be looking for a full API solution to migrate to from
another provider.

A particularly actionable piece of advice Rahul gives is to write
a “one-pager,” which contains all of the inputs and outputs and
core integration patterns you hope to support with your API. This
document will act as a quick reference point during the API design
process, allowing you to ensure that what you’re building will
provide the best experience to your developer audience.

2. Be Obsessive about Naming

Rahul’s next piece of advice was the inspiration for my recent
article, 10+ Best Practices for Naming API Endpoints. He says you
should be “obsessive” about how you name your APIs. After all,
once you name an API, it stays there for a pretty long time. And

https://nordicapis.com/10-best-practices-for-naming-api-endpoints/

Pointers for Building Developer-Friendly API Products 65

while you might be able to evolve quickly, there’s no guarantee
your developers will too.

If you want more specifics on how to do naming right, be sure to
check out the article linked above. If you’re just wondering why
naming matters, the answer is simple: it might not sound like much,
but the effect of redundant, inconsistent, or non-descriptive names
can quickly add up, making your APIs difficult to consume.

3. Always Stick to Your Process

By this point, many big enterprises have a tried-and-tested process
for building new APIs that incorporate plenty of time and due
diligence. It starts with a discovery phase, where you lay out the
problem you intend to solve, which is followed by a design phase,
where you start to think about concrete endpoints, fields, security
features, tools, specifications, and user stories. Then, you enter a
development phase before finally launching your new API.

This process usually results in intuitive and all-around great APIs.
However, Rahul recalls getting into a discussion with a corporate
leadership team concerning why it took an entire month to add one
field to an API. It’s easy to be swayed by external pressures like this,
but Rahul strongly believes you should stick with your guns.

As an API designer, Rahul says you’re forced to build something
that’s needed today but will still be used five or six years in the
future. You can whisk through the discovery, design, development,
and deployment processes, but you’ll end up with a suboptimal
product. Instead, stick to the approach that works, and accept that
creating or updating an API will take a little longer than others
might like.

Pointers for Building Developer-Friendly API Products 66

4. Build a Complete Ecosystem

While getting a single API out can be a challenge in and of itself
in some business environments, Rahul says that APIs are just the
start and that you can’t forget about the rest of the ecosystem. In
particular, he highlights the importance of SDKs, a reliable sandbox,
and debug-ready support staff.

Rahul believes that these little things do matter. Sure, it takes
time to put all the pieces in place, but these supporting ecosystem
assets significantly contribute to the usability of your core API
products. Importantly, you do genuinely have to care about and
maintain these assets: if you’re not careful, you’ll end up with old,
unhelpful documentation and a box ticked somewhere on the API-
as-a-Product checklist.

5. Think API Governance

Rahul’s last piece of advice is to think about how you organize
and govern your suite of APIs. He draws attention to Conway’s
Law, which suggests that we build systems that reflect our inter-
nal organizational or communication structures. The traditional
approach to combating this — i.e., building consistent APIs, despite
having different teams work on them — is to use some kind of API
governance system. In theory, by subjecting all API product teams
to the same standards, the APIs should feel consistent.

In practice, Rahul believes that there will always be little nuances
between APIs built by different teams, which adds complexity for
developers who are integrating two or more of them. To combat
this, Rahul suggests using something along the lines of the Inverse
ConwayManeuver (explained in the article above): if you’re always
going to have two related API products, have a single team be

https://nordicapis.com/conways-law-what-does-it-mean-for-your-api-strategy/
https://nordicapis.com/conways-law-what-does-it-mean-for-your-api-strategy/

Pointers for Building Developer-Friendly API Products 67

responsible for both developer interfaces. That way, the APIs are
bound to be consistent.

Final Thoughts

The best API products are built when you do things properly. That
starts with knowingwho your target developers are and how they’ll
use your API. Later, it means sticking to unnegotiable, tried and
tested processes and organization-wide governance standards and
getting names right the first time around. Finally, there’s more to an
API ecosystem than just the API itself, and maintaining supporting
assets like docs, SDKs, and sandboxes is crucial.

How To Treat Your API as
a Product

by Kristopher Sandoval

Though we tend to think of APIs in a very technical way, they
are increasingly combined within the context of business offerings
and values. Accordingly, many are recontextualizing things to treat
APIs more like products.

An API is essentially a traditional service, delivering capability to
the end user without sharing the risks and costs associated with the
service. Appropriately, even if the API provider does not function
as a business per se, we should treat the API as a business asset
rather than an amorphous codebase. When the API provider is in
fact a business, there’s only a greater reason to do so.

To help understandwhy this is valuable, and to leverage the results
of such a shift in thinking for better systems and technology, let’s
define some business terms within the context of the API industry.

How To Treat Your API as a Product 69

Consumer

When someone says consumer, the first thing that pops into most
people’s minds is a person buying a product, exchanging currency
or services for that product. In the world of APIs, a consumer is
simply anyone who utilizes a service, regardless of whether it is
paid or not.

There are two types of consumers — external, and internal. The
external consumer is exactly what it sounds like, a third party that
exists outside of the business. This can be the end user utilizing the
free, public endpoint, or another business utilizing a private, paid
endpoint. An internal consumer, however, is someone that exists
within the business unit. This might seem strange to non-business
people — after all, how can a business purchase their own products?

From a business perspective, there is value behind each transaction,
regardless if the transfer of value is simply in generating data,
integrating with third party solutions, or driving revenue directly.
Thus, by treating the API as a core business value generator
integratingwith both consumer types, you can leverage the revenue
streams that you do have, and improve the consumer experience.

Investment

People tend to think of coding as creating something out of nothing,
but the fact is that development is not a zero cost process.
For every hour spent working on the codebase, developing new
integrations, crafting new endpoints, there is a cost. This cost can
be in worker hours, or in the very real cost of spinning up additional
virtual or physical servers to support the API functions.

This cost is something that must be managed for better return
on value. Running out of money when half the codebase has
been created means you have nothing to offer the consumer, but

https://nordicapis.com/5-ways-apis-will-increase-revenue/
https://nordicapis.com/5-ways-apis-will-increase-revenue/
https://nordicapis.com/the-benefits-of-a-serverless-api-backend/

How To Treat Your API as a Product 70

being stuck perpetually creating revenue driving endpoints while
ignoring core value to the user can be just as damaging and just as
useless.

Investment and funding management processes can better guide
development and production to at least ensure a minimum viable
product. Iterating and expanding upon this demand ensures that
the product can evolve to changing business needs, as long as it’s
constructed around user feedback and real-world analytics.

The key here is to ensure return on investment not only for
added value to the various stakeholders and owners of the API,
but for the very real amount of increased assets and resources
that can be poured directly back into development. This in turn
can result in development of long-term features that facilitate long-
term funding.

Roadmaps and Lifecycles

If we’re going to treat the API as a product, it makes sense
then to useroadmaps and product lifecycles. Defining what the
minimally viable product is, and then developing roadmaps and
implementing other lifecycle management tools (such as the API
Model Canvas) to govern iteration upon it has several massive
benefits.

First and foremost, this process prevents feature creep. By limiting
development to a set course of known functions, values, or addi-
tions, creeping scope can be limited, making better use of limited
resources and ensuring that the consumers get what they need
before anything else. This prevention of creep also typically results
in a leaner codebase, which is easier to iterate upon, document, and
fix.

Additionally, by limiting development to that which is on the road
map, you prevent extra, unused endpoints, features that are never

https://nordicapis.com/accumulating-feedback-4-questions-api-providers-need-to-ask-their-users/
https://nordicapis.com/using-api-analytics-to-empower-the-platform/
https://nordicapis.com/api-model-canvas-developer-experience-is-a-key-ingredient-of-quality-apis/
https://nordicapis.com/api-model-canvas-developer-experience-is-a-key-ingredient-of-quality-apis/

How To Treat Your API as a Product 71

completed, etc. You’re essentially preventing bloat, which in turns
prevents feature fatigue and reduces your security threat footprint.

Additionally, implementing a lifecycle management process that
mirrors processes such as those found in ITIL or other management
guidelines can ensure that long-term value is created and limited re-
sources are optimally managed. This will have a long-term impact
on your organization, and can ensure that the API sticks around for
a very long time.

Reversing the Developer-Consumer
Relationship

The classic relationship between the developer and consumermight
look like this — “we built this awesome thing, now how can we
get people to want it?” Unfortunately, that’s not always effective
when it comes to APIs. An API by its very nature is typically built
to do something very specific. By treating the API as a product,
you’re essentially reversing this approach. Instead, it becomes
“people really want this feature and codebase, how do we build this
awesome thing?”

Iteration and development should be based entirely on the foun-
dational concept of doing what the consumer needs. Iterating on
feedback and real-world use cases will always deliver better, more
highly-adopted codebases, and result in a more well-supported
project. The consumer in this approach comes first, and then the
tech follows.

This is of course not always the case, such as with speciality APIs
or APIs implementing experimental systems, but in those cases, the
API isn’t really being framed as a product — in other words, that
is a very particular exception to what should be seen as a general,
fundamental rule.

How To Treat Your API as a Product 72

Consumer Friendly

Any business will tell you that success goes hand-in-hand with
being consumer friendly. Unless you’re the only option for a very
specific use case, if your product is less user friendly, it will not
be widely adopted against competition. That being said, there are
certain factors that must be considered to be truly “user friendly”.

• The API must have a great developer experience: This
means the API must be easy to onboard (setting up an
account and managing personal data), describe (the API
must have a core competency and function that can be
explained), and consumed (documentation must be adequate,
and understanding systems in place). Failure to ensure the
API can be consumed means that you will have an overly
complex product that users will eschew in the face of easier
alternatives.

• The API must be marketed properly and evangelized
within the correct context: A secure banking API that
utilizes existing systems and technologies in a better way
is not “disruptive”, and marketing it as such would cause
many consumers who want a stable, proven system to look
elsewhere. The same is true of users who want something
new — if your API is branded as “same old same old” and yet
marketed towards early adopters, you will see low adoption
and low success.

• The API must be unique: The market is vast, and for every
implementation, there is an alternate one vying for the top
spot. Simply put, to be a viable API product, it must be unique
in some part of its implementation. Whether this means the
UI is designed for a particular workflow or the solution is
truly novel, the API must have a unique element that makes it
intrinsically valuable to the internal and external consumers.

• The API must be secure: No user is going to consider a
solution friendly if its data is unsecured, exchanged in the

https://nordicapis.com/optimize-developer-experience-api/
https://nordicapis.com/the-reality-of-disruptive-tech/

How To Treat Your API as a Product 73

clear, and unencrypted. Secure your API, and the value will
be readily apparent to the average user.

Define and Adopt Business Roles

While this will likely make some anti-business types groan, perhaps
the best way to integrate this concept of “business as an API”
is to adopt some common business roles within the product
development team. An API that integrates these roles should have
a few basic roles to help guide form, function, development, and
marketing.

• An API Product Manager can help guide the API Product
Manager can help guide the API to adhere to the business
guidelines and roadmaps as set forth.

• API Sales Managers can help define the evangelizing and
marketing that must be done to support the external user and
drive discoverability.

• API Process Managers and Process Owners can help guide
the functions of the API itself as well as the resources they
govern.

While there are many roles, like evangelist, advocate, etc, these
three are a very good start, and adopting them can help reframe
an API into a product.

Assume Your API Will Become an
Public API

While many API developers develop within their current and given
business status, this can be harmful. Assuming that your API

https://nordicapis.com/benefits-of-the-devsecops-approach/
https://nordicapis.com/day-in-the-life-of-an-api-developer-evangelist/

How To Treat Your API as a Product 74

will always remain private, or always remain limited to business
interactions, only limits the potential for growth and new revenue
streams.

By assuming from the start that eventually everyone will be using
your API, you can start developing systems in such a way as to
support this possibility.

Simply put, assume that at the end of the day, you’re not going to be
there to walk the future public user through your API, regardless
of whether you intend to ever make it an open API. Develop in
such a way that this pivoting can be done easily, with minimal cost,
and with efficient application – at the very least, you are enabling
success, rather than preventing it.

Final Thoughts

To fully embrace an “API as a product” mentality, assume your
API will become public. This will result in better defined endpoints,
more efficient routing, better systems of scalability, and interfaces
that are well-documented and defined, even if theymay never open
to the public.

Not every API is going to fit into the traditional idea of what
a “business” is – some APIs are just for internal use or for very
limited, custom audiences. In many cases, there may not even be
a direct revenue source. Nonetheless, every single API has its own
consumers, and as such, treating theAPI as it if were a vital business
system can have huge benefits to your users.

Assume regardless of the final product that your API will someday
be a public product. At best, you will be thinking far ahead, and
at worst, you will simply engage in more efficient, valuable, and
impactful development to create a better product.

Why Your API Needs a
Dedicated Developer
Experience Team

by James Messinger

In the 2019 State of API report, surprisingly, only 37% of API
providers viewed documentation as a top priority. When API
consumers were asked to vote on the most important characteristic
of an API, 60% earmarked “ease-of-use” as their primary desire
when integrating, with documentation trailing in 3rd place. While
documentation can contribute to overall ease of use, these numbers
reveal that it is not the only element that plays into a good
developer experience.

So, the question is: How can API companies improve their overall
process and deliver the high-quality experience their users want?
One of the best answers to that question is: Focus on creating a

Why Your API Needs a Dedicated Developer Experience Team 76

dedicated developer experience team that can empower your users
by making it easier to understand, easier to build, and easier to
integrate (particularly if your company develops customer-facing
APIs).

Understanding the Difference:
DevRel and DX

What exactly is Developer Experience (DX)? DX is all about
understanding developers, their needs, their abilities, their values,
what they’re trying to accomplish, what tools and technologies
they’re using, the integration points, and how they feel while using
a product.

Developer relations (DevRel) is a vital component of a compre-
hensive DX strategy. Some companies are large enough to have
a dedicated DevRel team, perhaps even with multiple distinct roles,
including evangelists, advocates, and sometimes even tech writers
and growth hackers. These roles are all aimed at inspiring positive
relationships with developer users, through sharing knowledge that
fills the gap between the creators and consumers of tech.

Whether your company has a dedicated DevRel team or a DX team
that includes DevRel responsibilities, it would be remiss not to
acknowledge the role developer relations plays under the larger
umbrella of developer experience.

Why Developer Experience?

Software companies and SaaS providers that sell user interface (UI)
products have recognized the importance of good user experience
(UX) for decades. A great UX can be the key differentiator that

Why Your API Needs a Dedicated Developer Experience Team 77

makes your product successful. It’s how Apple won the cell phone
market and how Nest made thermostats sexy.

DX is to APIs as UX is to UIs. APIs are products, and developers
use those products. Those developers have come to expect a high
level of quality, ease-of-use, onboarding, and support thanks to
companies like Stripe, Nexmo, and HelloSign, who are continually
raising the bar.

“DX is the acquisition of knowledge needed to imple-
ment an API. Make the acquisition easier; knowledge
more digestible; the journey of implementing it simpler;
lives of developers better” — Anthony Tran, creator of
the Luna design system

Why the Shift?

So why are companies suddenly starting to realize that they need
a DX team? After all, they’ve scraped by without DX for decades.
What changed?

In the early 90s and into the 21st century, businesses typically
invested millions of dollars in on-premise software packages such
as CRMs, ERPs, and databases. They then relied on an army of
expensive contractors to customize these products to meet their
needs. Integrating in decades past was a big undertaking — in terms
of skill, labor, and capital.

However, as companies have moved into the cloud, they’ve shifted
away from monolithic software platforms and toward smaller,
micropayment-based SaaS products. This propagation of SaaS prod-
ucts has led to the need for standardized integrations between them,
which in turn has fueled the rise of the API economy. By 2011, REST
was an industry standard, and in just under a decade, we’ve seen
nearly a 1,000% increase in the number of APIs on the market.

Why Your API Needs a Dedicated Developer Experience Team 78

This Cambrian explosion has virtually eliminated the need for
expensive consultants who understand the intricacies of million-
dollar software packages. It’s now possible for any developer to
integrate with these APIs to link disparate systems and automate
their companies’ workflows.

The API economy has created a culture of expectation for APIs. It’s
now assumed that an API will be readily available, and in many
cases unmetered, for consumers or developers looking to “connect”
to your application. In fact, for many customers, your API is more
important than your UI. Whether you have an API and how easy
that API is to use may be the differentiators that make the customer
choose your product over your competitor’s.

So, how do you ensure they get the best, most well-rounded API?

You Need a Dedicated Developer
Experience Team

Developers aren’t the best at incorporating UI into their designs.
That’s why many companies employ UI specialists who are respon-
sible for putting in a friendly interface on top of the components a
dev team has built.

The same holds for APIs. Your dev team shouldn’t be solely respon-
sible for an API’s developer experience, because that’s not the dev
team’s specialty.

During ShipEngine’s early days, one of the defining moments for
our development team was recognizing that to increase adoption
we had to provide more focus on creating a product that developers
loved enough to justify building out a new integration. We weren’t
the first shipping API on the market, and we won’t be the last, so
we knew we needed a way to stand out.

Why Your API Needs a Dedicated Developer Experience Team 79

We started to look at how API companies in other industries
navigated around their competition.

Take popular payment processing platforms like PayPal and Stripe,
for example. Many may recognize PayPal as one of the leaders in
the industry — and, as one of the first on the market, they deserve
a seat at the table. But, historically, their API has been clunky and
awkward to use. When Stripe was first introduced, they knew they
were offering a product that developers would love, but also knew
gaining a loyal following would require a lot of legwork.

How were they able to do it?

By building an API with a good DX.

They designed a killer API with an emphasis on consistency and
quality standards, wrote user-friendly documentation, provided
useful code samples and powerful SDK libraries, wireframed their
website to prioritize developers’ needs, and they employed a great
developer relations team that attended conferences and wrote
knowledge-based articles. They hacked their way into a tight
market by creating a product that developers loved, and experience
they would want to share with others.

“Happy developers are chatty developers, and when we
talk to each other to recommend products, the oneswith
the best DX are at the top of the list.” — Sam Jarman, DX
speaker and writer

Stripe capitalized on their ease-of-use, knowing they could lean
on developers to sell their product for them so long as they could
show them how pleasant the integration experience could be. Their
success was even enough to make PayPal jealous.

So, what’s the takeaway?

Stripe is not the only company to quickly take over market share
through improved developer experience. So how were they able to

Why Your API Needs a Dedicated Developer Experience Team 80

corner the market in such a short amount of time? I believe it was
by employing a diverse multi-disciplinary team dedicated to the
four primary elements of developer experience.

4 Main Responsibilities of a
Developer Experience Team

At ShipEngine, our Developer Experience team exists to ensure
an exceptional experience for the developers and customers using
our API products. By focusing on these four primary areas of
responsibility, we’ve been able to design better features, champion
the interests of developers, translate feedback, and advise other
internal departments on how to better empathize with and design
for developers.

The four primary areas are:

1. API Design

While product development is largely left up to engineers and
product teams, a Developer Experience team should maintain
responsibility for providing the guidance and standards engineers
need to create a product that is received well by others. This
includes every part of its interface, including the protocol, style,
naming, models, operations, authentication, status codes, headers,
errors, paging, sorting, querying, and more. It may also include
some aspects of the behavior and implementation details of the API
as well. Types of Deliverables:

• Design guidance
• Design review
• Style guides
• Specifications / definitions

Why Your API Needs a Dedicated Developer Experience Team 81

2. Quality Assurance

WithAPIs, you alwayswant to aim for quality through consistency!
To ensure an API product and developer tooling meet a high
standard of quality, the DX team must become responsible for
employing automated tests, linters, and processes that verify com-
pliance with designs, schemas, and style guides. Quality assurance
also involves the propagation of a culture of quality throughout the
design, product, and engineering teams. Types of Deliverables:

• Contract testing
• Specification testing
• Style guide compliance testing
• Verifying accuracy and clarity of docs and tooling

3. Developer Tooling

You want to give developers a chance to test out your API before
investing in full integration. So, providing a robust library of
developer tools is a great way to show not tell them how great you
are. Developers want and need schemas, code samples, reference
implementations, SDKs, and a variety of other resources to help
guide them through the build-out. Types of Deliverables:

• Code samples
• Demos / reference implementations
• SDKs and libraries
• Specifications, definitions, and schemas
• Internal tooling and automation
• Integrations with developer tools and services

Why Your API Needs a Dedicated Developer Experience Team 82

4. Developer Relations

And finally, the role we (and users) are most familiar with. All
communications and interactions with developer customers, such
as documentation, training, release notes, community events, and
user feedback studies fall underneath Developer Relations. Deliver-
ables:

• Documentation / Tutorials / FAQs
• Release notes / changelogs
• System status info (downtime, bugs, performance)
• Media content (blogs, videos, etc.)
• Training and materials
• User research studies
• Events/community engagement (meetups, hackathons, con-
ferences, etc.)

Final Thoughts

Just as UI/UX has been a key differentiator for Graphical User
Interface products, Developer Experience is a key differentiator for
API products. And, a good DX strategy extends beyond the roles
and responsibilities of DevRel.

What Qualities Make a
Great API Product

Owner?
by Kristopher Sandoval

The role of a web API product owner is still pretty nebulous,
largely due to the fact that it’s a relatively new position. That’s
interesting, because anyone keen on API business development
knows just how valuable such a position is. A great API product
owner can be hugely beneficial, and can leverage the product’s
strengths to greater heights.

In this piece, we’re going to discuss what qualities make a great
API product owner, and what these qualities mean to the devel-
opment process as a whole. Once you’ve finished this piece, you
should have a solid understanding of these qualities, and a basic
rubric upon which they can be compared and contrasted with your

What Qualities Make a Great API Product Owner? 84

candidate of choice.

Why API Product Ownership is
Important

API product ownership is an important facet of modern web
API team organizational structures. Despite this importance, the
relative newness of the role is such that, even when the value is
recognized, what makes a good placement is not as obvious. Having
someone who can both manage a team and a product is powerful
— having someone who can do that while also evangelizing your
project internally and externally is exponentially more so.

There’s a difference between “getting something done” and “own-
ing a project,” however, and it is this distinction that makes a
position placement either a big win or a massive failure. Ownership
of a project and all the elements of that project have a sort of
cascading effect that can be more powerful than the sum of its
parts, boosting productivity, improving organizational well-being,
and creating a culture of personal accountability.

But what specifically does an API product owner position even
entail? And more importantly, what elements are to be expected
of a person in such a position?

Developer vs. Product Manager vs.
Evangelist — When Worlds Collide

The classic paradigm of digital product creation is a battle between
developer and manager. Developers try to create something they
believe in that is functional and high quality. Product managers, on
the other hand, are trying tomeet business goals, trying to ascertain

What Qualities Make a Great API Product Owner? 85

the true value of the product that others would be willing to invest
in it. Evangelists occupy an entirely different, unique space. They
come from a technical background but are often more concerned
with generating awareness, both internal and external.

This outlook is old-fashioned, but it worked in past eras of devel-
opment. The new developmental situation, however, has rejected
traditional roles in many cases, with small studios and groups
having more tools and better funding than ever before to create
unique, personal, and often niche solutions.

In this new paradigm, the old-fashioned approach simply does
not always work. The new development ecosystem often entails
product managers as developers, evangelists as developers, and so
forth — and as those lines have blurred, so too have the positions
that occupied those spaces. With developers having to wear so
many hats by the very nature of the development cycle, API
product ownership — as a concept and as a “position” within a
company — can entail many things.

With that in mind, let’s look at some of those important attributes
that define this role.

True Leadership

“Focus on constant iteration of your product or service.
Never hold too closely to your idea but be open to
change and innovation.” - Candace Carpenter

An API product owner is not just selling an API, but everything
behind it. For developer consumers, value is the sum of the support
offered, the experience of the developer team, the developer sup-
port, the documentation, and other developer portal materials. All
of this extra value, however, is directly powered by the leadership of
that team — documentation is worthless, for instance, if leadership
does not allow for it to be vetted and reviewed.

http://nordicapis.com/day-in-the-life-of-an-api-developer-evangelist/
http://ceoadvisor.com/dec2016newsletter.html
http://nordicapis.com/developer-relations-how-to-offer-unparalleled-developer-outreach/
http://nordicapis.com/developer-relations-how-to-offer-unparalleled-developer-outreach/
http://nordicapis.com/the-easiest-ways-to-generate-api-documentation/

What Qualities Make a Great API Product Owner? 86

Accordingly, the value of a product is magnified by the quality of
leadership in the API product ownership space. Product owners
must be leaders, and a strong ones at that. They need to take
the initiative to develop new projects, be willing to take risks for
new solutions, and do all of this while maintaining value for the
company and to the user. In short, the old adage rings true — head
in the clouds, feet on the ground.

Part of this also means, of course, that the product owner needs
to be accountable for their decisions, and able to rationalize these
choices in product and project movements to not only the company
and the team, but to the user base as well. Clear communication
plays a huge role in this, and effective documentation is a big part
of this approach.

Proficiency with Language vs. Familiarity
with Solution

The balance between proficiency in a given language and familiar-
ity with the implementation type is a delicate one, and one often
overlooked. Let’s imagine you are building an API in Go. Now, is
your choice of product manager driven more by someone who is a
master of Go, or by one who has heavy experience with distributed
microservices, but not necessarily experienced in Go?

This is the balancing act that needs to be considered carefully. It
might be tempting to look at what your product is built in, and then
hire based on language, but this might result in a candidate who is
an expert in the language but can barely understand the distributed
structure of your microservice family.

Understanding the specific design requirements of an API is a
must here, but always consider the attached attributes. If you are
designing RESTful applications, you need to find someone versed
in JSON. If working with SOAP, then XML is definitely an added

http://nordicapis.com/difference-api-documentation-specification-definition/
http://nordicapis.com/writing-microservices-in-go/
http://nordicapis.com/common-cases-when-using-soap-makes-sense/

What Qualities Make a Great API Product Owner? 87

benefit. Knowledge of open-source API standards and solutions is
important if that is your final intent.

These considerations are vital, and if properly considered, allow
for movement if your API ever needs to pivot and change. Having
the ability to adjust to the ever-changing tides of web development
makes a powerful API product owner even more so.

Marketing vs. Development

“Brand is just a perception, and perception will match
reality over time. Sometimes it will be ahead, other
times it will be behind. But brand is simply a collective
impression some have about a product.” - Elon Musk,
CEO of SpaceX and Tesla

A chief consideration in the API product ownership mindset is
whether or not the product owner should be positioned more in
terms of marketing or in terms of development. While this some-
what ties into our earlier comparison of development, management,
and evangelizing, this is much more a mindset consideration than
a job duty one — for reasons that will soon become apparent.

Bill Gates innovated the workplace computer, Steve Jobs innovated
the way we consume mobile media, Elon Musk innovated the way
we process online payments (not to mention space exploration,
and renewable-energy driven vehicles). When people talk about
innovators, those names are often attached to the product. The
point is that, in the tech space, the product owner is as much a
brand as what they are trying to sell.

Accordingly, there’s no such thing as “just” a developer or “just” a
marketer in the modern workspace. With the modern ecosystem of
development and innovation, the product owner should be just as
recognizable as the product itself.

https://www.inc.com/ananya-bhattacharya/5-elon-musk-quotes-about-innovation.html
https://www.inc.com/ananya-bhattacharya/5-elon-musk-quotes-about-innovation.html

What Qualities Make a Great API Product Owner? 88

Accordingly, the product owner should have qualities that reflect
and enable this. Being able to bask in the spotlight, while redirect-
ing that spotlight to the product, is immensely valuable. Framing
the solution with specific business critical use cases is likewise
valuable. Being able to oversee development, stand up and say
what it specifically is and does, and why it’s needed — that makes
a good API product owner.

TeamManagement

“I have learned that nothing is certain except for the
need to have strong risk management, a lot of cash, the
willingness to invest even when the future is unclear,
and great people.” - Jeff Immelt, CEO of GE

Team management is a huge part of any organization, but within
the API-fueled web economy, this is even more important. With
so many remote workers, sometimes located half a world apart,
the ability to inspire, lead, and most importantly organize defines
successful leaders, and thus successful organizations.

Likewise, being able to identify weaknesses within the orga-
nization allows for culling and for making leaner work groups.
Restructuring teams, being able to managerially outline working
group responsibilities, and delegating the right tasks to the right
people are all huge elements that must be done correctly in order
to leverage any team’s strengths.

Nomanager can function by themselves. Behind every Jobs, there is
aWozniak— and in themodern space, it’s more often a requirement
that an effective API product owner be both.

In terms of skill set considerations, knowledge and experience with
toolsets that enable team collaboration in this space are key. Knowl-
edge of messaging solutions like Slack can be hugely beneficial, and
being experienced with task distribution systems like Trello equally

http://www.foxbusiness.com/features/2012/04/16/business-leaders-ges-jeff-immelt.html
http://nordicapis.com/building-an-intelligent-bot-using-the-slack-api/

What Qualities Make a Great API Product Owner? 89

so. Even adopting online collaboration IDEs like Squad can mean
the difference between team failure or team success.

Experience

“There are pros and cons of experience. A con is that
you can’t look at the business with a fresh pair of eyes
and as objectively as if you were a new CEO. Fire
yourself on a Friday night and come in on Monday
morning as if a search firm put you there as a turn-
around leader. Can you be objective and make the bold
change?” - Andrea Jung, CEO of Avon

Experience is a yet another nebulous point to consider in balance
with other qualities. While it’s tempting to think that experience
means success, this is somewhat of a misattribution — experience
can also just mean time spent, and sometimes, you may want a
greenhorn rather than an expert.

This is very much a balancing game. Too much experience can
lead to bias for a given solution or choice, and can result in rote
implementations that just only slightly change from version to
version. Having too much experience can also lead to complacency,
and in some personality types, arrogance, both of which allow for
consistent failures to go unnoticed.

Likewise, having too little experience can have damaging effects
as well. Innovative approaches from a newcomer may not be
grounded in reality, and can lead to some expensive failures. Addi-
tionally, while a greenhorn may be more creatively oriented, newer
developers or managers can also lack crucial experience, making
learned lessons come at a price.

What you really want here is a mixture. A good product manager
can be highly experienced, but theymust have themind of a newbie,

https://squadedit.com/
https://www.forbes.com/profile/andrea-jung/

What Qualities Make a Great API Product Owner? 90

willing to take risks and do things outside the box. They must be
willing to think big, and most of all, be willing to fail.

Meeting Business Objectives

This is not a nebulous concept, and in fact, might be the most
concrete of all advice in this piece. Your API product owner must
own the product, and thereby, be responsible for and cognizant of
the business objectives that have been given to them.

A product owner has a unique position in that they are straddling
the world of development and business. While they can see the
intimate details of both sides, they must be able to see the larger
picture, and where the product fits in that picture. They must be
able to guide the project in such a way as to promote the attainment
of business objectives, balanced of course by all the other attributes
on this list.

Seeks to Understand Developer Audience

Finally, and perhaps most importantly, a product owner must
intimately understand their audience. A product is worthless
without a user base, use case, and no desire for implementation
— thus, an API product owner must be familiar with all of them.

As a point, here, the API owner must cater the API, its marketing,
and its approach to promote both the best developer and user
experiences possible. This includes everything from beautiful doc-
umentation to basic outreach, from error codes to code distribution
— everything should be designed to help build a community.

Simply put, the API product owner must act as the unifying node
between several diverse points within the community, addressing
analytics, the development team processes, marketing and sales,
and user experience, with the end goal being at any cost to satisfy
the customer base and achieve the goals they desire.

http://nordicapis.com/beautiful-ui-design-for-api-developer-portals/
http://nordicapis.com/beautiful-ui-design-for-api-developer-portals/
http://nordicapis.com/developer-relations-how-to-offer-unparalleled-developer-outreach/
http://nordicapis.com/best-practices-api-error-handling/

What Qualities Make a Great API Product Owner? 91

Hiring Internally vs. Externally

While it might seem easy to consider a candidate based on the
concepts introduced here, there’s one variable that’s not quite
as easy to answer — the question between hiring internally or
externally.

On the one hand, there’s a definite value to hiring from internal
staff. Internal staff are already intimately familiar with the solution
and the language — this saves development time, and definitely
helps when it comes to documentation and other practices. On the
other hand, this also leads to the issueswe talked about earlier when
it comes to experience bias — and in this case, new blood can be just
as powerful as old.

Outsourcing to Jump-Start

One remaining topic is the prospect of outsourcing the position as
a temporary method to jump-start API development or marketing.
This is becoming a much more common tactic as years pass, and
has been used to great effect for API development. This strategy
can allow for rapid initial development, getting the project off the
ground. That being said, there are some issues.

Chief of those issues is outsourcing ignores the value of veterans.
Having a long-term, proven manager is very important, and cannot
be ignored for the sake of a quick fix. While having too much
experience can be a problem as previously stated, when it comes
to getting a program off the ground, having a proven manager can
help give predictable insights into the response you can expect from
the community.

With all of this in mind, our advice would be this — jump-starting
through outsourcing is a valid approach, but it should be used
sparingly. When used, whenever possible, an agreement should

What Qualities Make a Great API Product Owner? 92

come with the caveat that the manager, having proved themselves
through successful iteration and launch, becomes a permanent
fixture on the team.

Conclusion

We hope we’ve helped illuminate all of the various qualities that
make a great API product owner — or at the very least, given a
strong rubric withwhich to judge possible candidates.While there’s
no possible way to cover every single possible skill, caveat, and
quality, those we’ve discussed in this piece should serve as a solid
basis to start.

6 Ways to Market Your
Niche API

by Thomas Bush

So you’ve just finished building the perfect API: it’s well-designed
and solves particular problems that everyone is having — what
now? You could just tell a few colleagues about it and let word-
of-mouth do the rest for you, but if you want to grow your user
base fast, you’ll have to get your hands dirty with some marketing.

Thankfully, there are a lot of options for marketing APIs; what’s
more none of them are particularly complicated, and they definitely
don’t feel “sleazy” like the widespread marketing and sales stigma
might have you believe. Here are six of our favorite ideas for how
you can market a niche API, complete with actionable pointers and
a few case studies…

6 Ways to Market Your Niche API 94

1. List Your API on Directories

One of the most effective, yet straightforward ways you can pro-
mote an API is by listing it on online API directories. The majority
of directories have some kind of search function, which allows users
to find your API by name (if you chose a descriptive one), as well as
incredibly useful categorization and keyword features. Listing your
API on these directories is as easy as pie, and since every directory
is a little bit different, we won’t go through process here. If you’re
looking for some suggestions on which directory to start with, take
a look at ProgrammableWeb, RapidAPI, and APIs.io.

Here are some pointers on how to make the most of these directo-
ries…

DOs:

* Make use of all the major directories
* Look for smaller, more specific directories in your niche
* Provide as much information about your API as possible

DON’Ts:

* Choose irrelevant keywords and categories
* Forget to update listings and let information grow stale

2. Create Valuable Content

Content marketing is a fantastic way to market any product —
and the humble API is no exception. Creating helpful (or even
entertaining) content that appeals to prospective users is a surefire
way to have the right people stumble upon your API. Truth be told,
you can create whatever type of content you think is appropriate,
but text (e.g. blog posts or free ebooks) and video (e.g. walkthroughs

https://www.programmableweb.com/
https://rapidapi.com/
http://apis.io/

6 Ways to Market Your Niche API 95

or challenges) are popular for good reason. On that same note, you
probably want to focus on creating informative content, unless you
think the entertaining stuff will really hit a note with potential
users.

There’s also the tangential approach of creating a mashup: use
your API to build an awesome service that demonstrates the
functionality of your API. This always gets people talking – and
will help programmers both run into and fall in love with your
API. As an example, nViso used their facial analysis API to build a
web app that offers financial advice based on your facial reaction to
certain questions. Time for some hints on creating great content…

DOs:

* Explore different mediums of content creation
* Market your content (take SEO into account at all times)
* Enjoy the process so consumers will too

DON’Ts:

Make content that isn’t relevant to your product or brand Create
subpar content just for the sake of it

Case Study: Ipinfo.io

ipinfo.io provides an API for looking up IP addresses. Their con-
tent strategy involves long, well-developed bimonthly blog posts
which cater to existing users, potential users, and the programming
ecosphere as a whole. These articles ultimately market themselves,
giving ipinfo a constant influx of curious visitors who want to learn
more. Many niche APIs use a content strategy to spread awareness.

https://www.nviso-insights.com/en/news/nviso-launches-emotion-advisor
https://www.nviso-insights.com/en/news/nviso-launches-emotion-advisor
https://ipinfo.io/
https://blog.ipinfo.io/

6 Ways to Market Your Niche API 96

3. Make the Most of Social Media

Social media is all the craze right now, or at least it was five years
ago. However, it’s still a powerful tool for creating relationships
with prospective users — and is just as effective for maintaining
them. Ultimately, what you share on social media is “content”, so
you can decide whether you’ll inform (especially by sharing perti-
nent news) or entertain along your journey of customer acquisition.

In terms of traditional social media, Facebook and Twitter are
the most universal options, but you should definitely explore the
possibility of contributing to Q&A sites (although it’s a stretch to
call that social media) — like Quora or Stack Overflow—where you
can create organic product interest just by helping out. For social
media, here’s what you should and shouldn’t do…

DOs:

* Keep your followers updated on a regular basis
* Share anything you find fun, exciting, or helpful
* Answer any relevant questions you can

DON’Ts:

* Blatantly shill your own API
* Spam your followers

Case Study: Twilio

Twilio’s API products are all about cloud communication. They
take a communicative approach to marketing, too, with full time
developer evangelist Phil Nash answering Stack Overflow ques-
tions on a weekly basis. Most of the answers help out existing
Twilio users, creating a powerful and trusted social presence for the

https://www.twilio.com/
https://stackoverflow.com/users/28376/philnash?tab=answers&sort=newest
https://stackoverflow.com/users/28376/philnash?tab=answers&sort=newest

6 Ways to Market Your Niche API 97

company. Forum participation is one way to passively evangelize a
service.

4. Host and Attend Events

One of the more expensive, but definitely more conversant ways to
market a niche API is by hosting, as well as attending, relevant
events. In-person events are quite frankly unmatched when it
comes to building meaningful relationships with your user base;
the trade-off is not being able to attend them from behind the
computer screen. Attending events in your niche is a much more
affordable approach, but if none of them seem to riff with your
product then you might have to host one. Examples of such events
include conventions, conferences, and hackathons. This is how to
make the most of these events…

DOs:

* Contribute to the space in a natural way
* Make as many connections as possible
* If hosting, offer incentives (e.g. prizes or just fun) for attending

DONT’s:

* Blow your marketing budget out of the water by mistake
* Assume that every attendee will become a user

Case Study: Shopify

Shopify has to be the world’s fastest growing eCommerce company,
with numerous APIs that developers can use to work with their
platform. Since 2016, Shopify has hosted “Unite”, their annual
conference for both partners and developers, where they announce

https://www.shopify.com/
https://www.shopify.com/partners/blog/83705734-announcing-unite-shopifys-partner-and-developer-conference

6 Ways to Market Your Niche API 98

new releases and give talks. Not only does this improve brand
awareness, but it also skyrockets credibility. Shopify arranges their
own developer conference to encourage community formation.

5. Use Launch Announcements

It’s the most obvious way to tell people about your new API: use
launch announcements to countdown to release day! While you
could keep this internal and announce your release only to an
existing user base, it’s a good idea to let the public know too. You
can use ProductHunt for public launch announcements, but don’t
be scared to hunt around and find thought leaders in your space
who might give your upcoming API a shoutout. If you have a blog
or email newsletter, you should include a notice there too. Here are
some suggestions…

DOs:

* Publishmore than one launch announcements (just in case anyone
misses the first)
* Tell users what to expect

DON’Ts:

• Spam your launch on every page you can find

6. Reach Out Directly

The final, and perhaps the least creative way to market your API
is with direct marketing. If you already have an email list or a
social media following, this might mean announcing the release
of your API (just as above) or reminding people of it, but otherwise

https://www.producthunt.com/

6 Ways to Market Your Niche API 99

you could still consider targeted advertising as an option. This
method could cost as little as nothing, but is capable of killing your
budget if you go too heavy on the advertising suite. That’s why
it’s essential you consider what audience you’ll be reaching out to
directly. Reaching out is easier with these pointers…

DOs:

* Show genuine enthusiasm for your product (hopefully you’ve
created an awesome API)
* Offer incentives for those who take action

DON’Ts:

* Devalue your brand with “spaminess” or “pushiness”

Don’t Forget to Make Devs Happy!

While that’s it for our “proper” marketing methods, it goes without
saying that your API should work great, and just as importantly:
your developers should love using it. Creating a fantastic developer
experience will augment these marketing methods by encouraging
programmers to use and talk about your API. On the other hand,
a poor developer experience will hurt user acquisition — all those
marketing efforts will be in vain if users click away as soon as they
see your developer portal. To wrap things up, here are some of the
essentials for a solid developer experience:

* A clean and intuitive developer portal
* Plenty of code samples and a sandbox area (for easy testing)
* SDKs and reference docs

https://nordicapis.com/optimize-developer-experience-api/
https://nordicapis.com/optimize-developer-experience-api/

Nordic APIs Resources
Related API-as-a-Product Sessions

Visit our Youtube Channel for many presentations on API business.

More eBooks by Nordic APIs:

Visit our eBook page to download all the following eBooks for free!

How to Successfully Market an API: The bible for project man-
agers, technical evangelists, or marketing aficionados in the process
of promoting an API program.

Identity and APIs: Discover the techniques to secure platform
access and delegate access throughout a mature API ecosystem.

API Strategy for Open Banking: Banking infrastructure is decom-
posing into reusable, API-first components. Discover the API side
of open banking, with best practices and case studies from some of
the worldâ€™s leading open banking initiatives.

GraphQL or Bust: Everything GraphQL! Explore the benefits
of GraphQL, differences between it and REST, nuanced security
concerns, extending GraphQL with additional tooling, GraphQL-
specific consoles, and more.

The API Economy: APIs have given birth to a variety of unprece-
dented services. Learn how to get the most out of this new economy.

API Driven-DevOps: One important development in recent years
has been the emergence of DevOps, a discipline at the crossroads
between application development and system administration.

https://www.youtube.com/user/nordicapis
https://nordicapis.com/api-ebooks/

Nordic APIs Resources 101

Securing the API Stronghold: The most comprehensive freely
available deep dive into the core tenants of modern web API
security, identity control, and access management.

Developing The API Mindset: Distinguishes Public, Private, and
Partner API business strategies with use cases from Nordic APIs
events.

Create With Us

At Nordic APIs, we are striving to inspire API practitioners with
thought-provoking content. By sharing compelling stories, we aim
to show that everyone can benefit from using APIs.

Write: Our blog is open for submissions from the community. If you
have an API story to share, please read our guidelines and pitch a
topic here.

Speak: If you would like to speak at a future Nordic APIs event,
please visit our call for speakers page.

https://nordicapis.com/create-with-us/
https://nordicapis.com/create-with-us/
https://nordicapis.com/call-speakers/

Nordic APIs Resources 102

About Nordic APIs

Nordic APIs is an independent blog and this publication has not
been authorized, sponsored, or otherwise approved by any com-
pany mentioned in it. All trademarks, servicemarks, registered
trademarks, and registered servicemarks are the property of their
respective owners.

Nordic APIs AB ©

Facebook | Twitter | Linkedin | YouTube

Blog | Home | Newsletter

http://facebook.com/nordicapis
http://twitter.com/nordicapis
https://www.linkedin.com/company/nordic-apis
https://www.youtube.com/user/nordicapis
http://nordicapis.com/blog/
http://nordicapis.com/
http://nordicapis.com/newsletter/

	Table of Contents
	Supported by Curity
	Foreword: The Potential of API-as-a-Product
	What is API-as-a-Product?
	API-as-a-Product Consumption and Monetization Models
	The Future of API-as-a-Product

	8 Unexpected Challenges of Running an API-as-a-Product
	1. It's More Than A Technical Challenge
	2. Realizing You Need an API Product Manager
	3. Developers Will Spam Your Free Trial
	4. Developers Are Resistant to Paying
	5. Providing Ongoing Support is Challenging
	6. Lowering Barriers To Adoption
	7. Your Real Competition May Surprise You…
	8. Build It, And They (Might Not) Come
	Final Thoughts: The Real Product is Trust

	What to Consider When Building Your API Strategy
	The API-First Approach
	The API Economy
	Challenges and Risks
	API-as-a-Product
	Focusing on the Core Business
	Providing Seamless User Experience
	Summary

	6 API-Driven Startups Shaking Up Silicon Valley
	1. FalconX
	2. Flinks
	3. Spruce
	4. Evervault
	5. Nylas
	6. Segment
	Final Thoughts

	5 Ways to Generate Direct Revenue With APIs
	Direct vs. Indirect Monetization
	5 Methods of Direct API Monetization
	API Monetization Strategy

	The Ultimate Guide to Pricing Your API
	First Things, First. How Do Businesses Monetize Their APIs?
	Three Developer Usage Pricing Models
	Original Benchmark Data
	Include a Free Testing Plan
	Tailor These Benchmarks for Your Business with The ``Three Cs''
	The Takeaways

	Calculating the Total Cost of Running an API Product
	Assessing Development Time
	Deployment and Maintenance Costs
	Advocacy and Marketing
	Evaluating our Totals

	13 Important Metrics for API Companies
	Infrastructure API Metrics
	Application API Metrics
	API Product Metrics
	Business and Growth
	Conclusion: Track the Right API Metrics

	Pointers for Building Developer-Friendly API Products
	1. Know Your Developers
	2. Be Obsessive about Naming
	3. Always Stick to Your Process
	4. Build a Complete Ecosystem
	5. Think API Governance
	Final Thoughts

	How To Treat Your API as a Product
	Consumer
	Investment
	Roadmaps and Lifecycles
	Reversing the Developer-Consumer Relationship
	Consumer Friendly
	Define and Adopt Business Roles
	Assume Your API Will Become an Public API
	Final Thoughts

	Why Your API Needs a Dedicated Developer Experience Team
	Understanding the Difference: DevRel and DX
	Why Developer Experience?
	Why the Shift?
	You Need a Dedicated Developer Experience Team
	4 Main Responsibilities of a Developer Experience Team
	Final Thoughts

	What Qualities Make a Great API Product Owner?
	Why API Product Ownership is Important
	Developer vs. Product Manager vs. Evangelist — When Worlds Collide
	Hiring Internally vs. Externally
	Outsourcing to Jump-Start
	Conclusion

	6 Ways to Market Your Niche API
	1. List Your API on Directories
	2. Create Valuable Content
	3. Make the Most of Social Media
	4. Host and Attend Events
	5. Use Launch Announcements
	6. Reach Out Directly
	Don’t Forget to Make Devs Happy!

	Nordic APIs Resources

