

Securing The API Stronghold
The Ultimate Guide to API Security

Nordic APIs

©2015 Nordic APIs AB

Contents

Preface . i

1. Introducing API Security Concepts 1
1.1 Identity is at the Forefront of API Security . 2
1.2 Neo-Security Stack 2
1.3 OAuth Basics 3
1.4 OpenID Connect 5
1.5 JSON Identity Suite 6
1.6 Neo-Security Stack Protocols Increase API

Security . 6
1.7 The Myth of API Keys 7
1.8 Access Management 7
1.9 IoT Security 7
1.10 Using Proven Standards 8

2. The 4 Defenses of The API Stronghold 9
2.1 Balancing Access and Permissions 10
2.2 Authentication: Identity 12
2.3 Authorization: Access 13
2.4 Federation: Reusing Credentials & Spread-

ing Resources 14
2.5 Delegation: The Signet of (Limited) Power . 18
2.6 Holistic Security vs. Singular Approach . . . 19
2.7 Application For APIs 20

CONTENTS

3. Equipping Your API With the Right Armor: 3
Approaches to Provisioning 22
3.1 Differences In API Approaches: Private, Pub-

lic, & Partner APIs 23
3.2 Considerations and Caveats 25
3.3 So Where Is The Middle Ground? 26
3.4 Real-World Failure 27
3.5 Two Real-World Successes 29
3.6 Conclusion 30

4. Your API is Vulnerable: 4 Top Security Risks
to Mitigate . 32
4.1 Gauging Vulnerabilities 33
4.2 Black Hat vs. White Hat Hackers 34
4.3 Risk 1 - Security Relies on the Developer . . 35
4.4 Risk 2 - “Just Enough” Coding 36
4.5 Risk 3 - Misunderstanding Your Ecosystem 39
4.6 Risk 4 - Trusting the API Consumer With

Too Much Control 40
4.7 Conclusion 41

5. Deep Dive into OAuth and OpenID Connect . 42
5.1 OAuth and OpenID Connect in Context . . 42
5.2 Start with a Secure Foundation 43
5.3 Overview of OAuth 44
5.4 Actors in OAuth 45
5.5 Scopes . 46
5.6 Kinds of Tokens 46
5.7 Passing Tokens 47
5.8 Profiles of Tokens 48
5.9 Types of Tokens 49
5.10 OAuth Flow 51
5.11 Improper and Proper Uses of OAuth 52
5.12 Building OpenID Connect Atop OAuth . . . 53
5.13 Conclusion 56

CONTENTS

6. UniqueAuthorizationApplications ofOpenID
Connect . 58
6.1 How OpenID Connect Enables Native SSO . 59
6.2 How to Use OpenID Connect to Enable

Mobile Information Management and BYOD 60
6.3 How OpenID Connect Enables the Internet

of Things . 62

7. HowToControlUser IdentityWithinMicroser-
vices . 64
7.1 What Are Microservices, Again? 65
7.2 Great, So What’s The Problem? 66
7.3 The Solution:OAuthAsADelegation Protocol 67
7.4 The Simplified OAuth 2 Flow 68
7.5 The OpenID Connect Flow 69
7.6 Using JWT For OAuth Access Tokens 71
7.7 Let All Microservices Consume JWT 72
7.8 Why Do This? 73

8. Data Sharing in the IoT 74
8.1 A New Economy Based on Shared, Dele-

gated Ownership 75
8.2 Connected Bike Lock Example IoT Device . 76
8.3 How This Works 76
8.4 Option #1: Access Tables 77
8.5 Option#2:Delegated Tokens:OpenIDCon-

nect . 78
8.6 Review: . 80

9. Securing Your Data Stream with P2P Encryp-
tion . 82
9.1 Why Encrypt Data? 83
9.2 Defining Terms 84
9.3 Variants of Key Encryption 86
9.4 Built-in Encryption Solutions 87

CONTENTS

9.5 External Encryption Solutions 88
9.6 Use-Case Scenarios 88
9.7 Example Code Executions 89
9.8 Conclusion 90

10. Day Zero Flash Exploits and Versioning Tech-
niques . 91
10.1 Short History of Dependency-Centric De-

sign Architecture 92
10.2 The Hotfix — Versioning 93
10.3 Dependency Implementation Steps: EIT . . 95
10.4 Lessons Learned 96
10.5 Conclusion 97

11. Fostering an Internal Culture of Security . . . 98
11.1 Holistic Security — Whose Responsibility? . 99
11.2 The Importance of CIA: Confidentiality, In-

tegrity, Availability 100
11.3 4 Aspects of a Security Culture 105
11.4 Considering “Culture” 106
11.5 All Organizations Should Perpetuate an In-

ternal Culture of Security 107

Resources . 108
API Themed Events 108
API Security Talks: 108
Follow the Nordic APIs Blog 109
More eBooks by Nordic APIs: 109

Endnotes . 110

Preface
As the world becomes more and more connected, digital
security becomes an increasing concern. Especially in the
Internet of Things (IoT), Application Programming Inter-
face (API), and microservice spaces, the proper access
management needs to be seriously addressed to ensure
web assets are securely distributed.

During the Nordic APIs World Tour - a five day interna-
tional conference we held in May 2015 - our speakers
consistently reiterated the importance of API security.
So, to help providers secure their systems, we at Nordic
APIs have collated our most helpful advice on API security
into this eBook; a single tomb that introduces important
terms, outlines proven API security stacks, and describes
workflows usingmodern technologies such as OAuth and
OpenID Connect.

Founded on insights from identity experts and security
specialists, this knowledge is crucial for most web service
platforms that needs to properly authenticate, control ac-
cess, delegate authority, and federate credentials across
a system.

Following an overview of basic concepts, we’ll dive into
specific considerations such as:

• Vulnerabilities and what whitehackers look for
• How to implement a secure versioning strategy
• The three distinct approaches to API licensing and
availability

i

Preface ii

• Performing delegation of user identity across mi-
croservices and IoT devices

• Using the Neo-Security stack to handle identity and
access control with OAuth 2.0 and OpenID work-
flows

• Differentiating Authentication, Authorization, Fed-
eration, and Delegation, and the importance of each

• Using OpenID Connect for Native Single Sign On
(SSO) and Mobile Identity Management (MIM)

• Ways to introduce a culture of security into your
organization

• Securing your data streamat the point-to-point level
• And more…

Please read on, share, and enjoy the 5th free eBook from
the Nordic APIs team!

– Bill Doerrfeld, Editor in Chief, Nordic APIs

Connect with Nordic APIs:

Facebook | Twitter | Linkedin | Google+ | YouTube

Blog | Home | Newsletter | Contact

http://facebook.com/nordicapis
http://twitter.com/nordicapis
https://www.linkedin.com/company/nordic-apis
https://plus.google.com/u/0/+Nordicapis/posts
https://www.youtube.com/user/nordicapis
http://nordicapis.com/blog/
http://nordicapis.com
http://nordicapis.com/newsletter/
mailto:info@nordicapis.com

1. Introducing API Security
Concepts
“Knowing who has the right to do what with
your API is key to success” - Andreas Krohn,
Dopter

“Design all API security with public access in
mind” - Phillipp Schöne, Axway

Application Programming Interfaces or APIs are not only
an extension of the social web, but continue to seri-
ously disrupt entire industries, change how Business-to-
business (B2B) communication is throttled, spark inno-
vation, and even inspire social change. Simply put by
TechCrunch, “APIs fuel the software that’s eating theworld.”

Within this vibrant and quickly expanding economy, an
increasing amount of data is being funneled through
systems not designed with the scale of protection that is
necessary. The risk of cyber threat is now the highest it
has ever been, and it won’t stop anytime soon. To combat
this threat wemust take the smart precautions to armour
systems. We build with the assumption that even private
APIs will sooner or later become exposed to the public,
and embrace proper security implementation as a top
concern.

1

http://nordicapis.com/apis-are-evolving-the-b2b-landscape-2/
http://nordicapis.com/apis-are-evolving-the-b2b-landscape-2/
http://nordicapis.com/apis-part-of-the-creative-palette/
http://techcrunch.com/2015/05/06/apis-fuel-the-software-thats-eating-the-world/
http://thehill.com/policy/cybersecurity/221936-study-cyber-attacks-up-48-percent-in-2014
http://thehill.com/policy/cybersecurity/221936-study-cyber-attacks-up-48-percent-in-2014

Introducing API Security Concepts 2

1.1 Identity is at the Forefront of API
Security

API security isn’t just about the API itself, but also about
the security of entire organizations and mobile products
when they intersect with APIs.

When developing an API, the security of the mobile de-
vice matters just as much as the security of the API.
Does it have anti-virus software installed? Is it enrolled
in a mobile device management solution (MDM)? Does
it have mobile application management software (MAM)
installed? You also need to worry about enterprise se-
curity. Are the servers secure? Do your machines have
intrusion detection?

At this junction of APIs, business, and mobile, lies the
individual. Only when you knowwho is at this core will you
know what they should be accessing and how they should
be accessing it.

1.2 Neo-Security Stack

When we start to expose high-value information and
resources, we need to have high-level assurance of who
is accessing them. API security is comprised of a number
of protocols, which Twobo Technologies refers to as the
Neo-Security stack. This standards-based cloud security
suite is usually comprised of these protocols and tech-
nologies:

• OAuth 2: The open standard for secure, delegated
access

• OpenID Connect: For federation which allows for
the secure exchange of user authentication data

http://en.wikipedia.org/wiki/Mobile_device_management
http://en.wikipedia.org/wiki/Mobile_application_management

Introducing API Security Concepts 3

• JSON Identity Suite: The collection of JSON-based
protocols for representing the identity of users

• SCIM: System for Cross-domain Identity Manage-
ment for user account provisioning and deprovi-
sioning

• U2F: Universal 2-factor authentication for asymmet-
rically identifying users with a high degree of confi-
dence that they really are who they say they are

• ALFA: For defining fine-grained authorization rules
in a JSON-like policy language (which compiles down
into XACML)

While the Neo-Security stack creates a comprehensive
security solution formobility, it is a great challenge for API
developers to manage a myriad of specifications them-
selves.

1.3 OAuth Basics

As the risk associated with an individual’s online identity
increases, we need to ask permission before exposing
identity and any vulnerable resources with an API. OAuth
is a framework used to build API security solutions - a
framework ormeta-protocol underwhichwe create other
protocols to define how tokens are handled. Despite its
name, OAuth is not for authentication, federation, or even
authorization; it helps delegate access, ie. giving an app
access to your data or service. A benefit of using OAuth is
that somebody else authenticates users.

These following factors make up OAuth2 Protocols:

• Client: The web or mobile application involved

http://oauth.net/2/

Introducing API Security Concepts 4

• Authorization Server (AS): The security token ser-
vice, which issues credentials and tokens that repre-
sent the resource owner

• Resource Owner (RO): Authorizes or delegates ac-
cess to the RS

• Resource Server (RS): Often the API itself, a collec-
tion of libraries and web applications

How these four OAuth2 actors work together varies with
each integration. We’ll dive into the processes behind
common OAuth server flows in future chapters, but to
summarize:

OAuth Web Server Flow

A “three-legged OAuth” process occurs when an end
user specifies that he or she wants to delegate access to
a third-party application for use within the client applica-
tion. The client application then redirects this request to
the AS, which requires authentication for identification.
The AS then authorizes that client and the RO is redirected
back to the web app with a single-use access code.

The single-use access code is sent back to the AS, which
then converts it into an access token that the end user
may use to access the server. At the same time, the AS
may also send back a refresh token which will allow the
end user to use the same OAuth to access more than
once.

Essentially, the access token allows a user to call the API.
In return, the API gains access to information about both
the client and the resource owner and what path they
took, what client they are using, and who is the end user.
With this information, you are able to create much more

Introducing API Security Concepts 5

complete web access control decisions that improve API
security. Everything is built right into OAuth2, limiting
human-designed security errors.

1.4 OpenID Connect

OpenID Connect is a standard that complements OAuth
to add user identity to an API security solution. OpenID
Connect gives you a standardized identity layer with stan-
dardized, researched risk mitigation and continuous ex-
amination of new threats. OpenID Connect is often used
to connect internal applications and share user informa-
tion.

OpenID Connect and its predecessor SAML focus on au-
thentication and federation, identifying a user before in-
formation is pushed to a third-party. Using OpenID Con-
nect, you could give strategic partners similar access to
make API calls.

There are even third-party organizations responsible for
determining identity, often called an “identity provider”
or IdP. Developers are able to use an IdP and push that
access to a third-party app. This allows the IdP to act as
an identity provider as well as an API provider, allowing
the IdP, acting as an API, to exchange data with the app.

OpenID Connect builds on top of OAuth2 to define a
federation protocol. Optimized around the user consent
flows, OpenID adds identity-based information on top of
OAuth into the inputs and outputs.

SCIM Identifies User and Group Schemas for
Developers

SCIM defines the RESTful API protocol to manage and

http://openid.net/connect/
https://www.youtube.com/watch?v=dl0jD29XkK4
http://en.wikipedia.org/wiki/Identity_provider
http://www.simplecloud.info/

Introducing API Security Concepts 6

specify user and group schemas and the properties on
them, including defining the markup for representing
things like first/last name, email address, actual address,
and phone number. It enables you to identify users within
groups so you can easily add or remove them, without
having to reinvent the API.

Different layers of the Neo-Security stack can be com-
bined. For example, OAuth is used to secure SCIM API
calls for instances like delegated access for creating and
updating users. SCIM and SAML or OpenID Connect can
be bound to provide just-in-time provisioning (JIT), which
allows you to create, update, and delete users without
tying it to an authentication event.

1.5 JSON Identity Suite

The identity-based information provided by OpenID Con-
nect is marked up in something called Jason Web Tokens
or JWTs (pronounced “Jots”.) JWTs are part of the JSON
Identity Suite that the Internet Engineering Task Force
(IETF) has defined. JWTs are designed to be light-weight
tokens that can be easily passed in that HTTP header.
They are like SAML tokens, but are less expressive, more
compact, with less security options, all encoded in JSON
instead of XML.

1.6 Neo-Security Stack Protocols
Increase API Security

There’s no doubt that security risk increases as more and
more APIs are opened up to connect and share informa-
tion. The technologies and procedures described in this

http://documentation.pingidentity.com/display/PF70/Using+Just-in-Time+Provisioning
https://www.ietf.org/secretariat.html

Introducing API Security Concepts 7

article aim to decrease vulnerability. Though the IETF has
outlined a set of protocols to guide API development and
exposition, API providers must educate themselves on
the language of security in order to avoid human error
and prevent API attacks.

1.7 The Myth of API Keys

There are many misunderstandings surrounding API se-
curity. For one, API keys are not API security. API keys are
inherently insecure - essentially being a password that is
hardcoded into applications and often distributed all over
the place, giving anyone with the key access to the API.
OAuth is not API security either - simply adding OAuth to
an API does not make it secure. What an API needs is a
holistic approach to security, imbued with enterprise and
mobile security.

1.8 Access Management

An important API security case is user-to-user delegation.
This is when you give another person rights to access your
data instead of giving an app the rights to access your
data. This is made possible by using OAuth and OpenID
Connect with Delegated Tokens. A Delegated Token is
a form of OAuth Access Token that also contains user
information.

1.9 IoT Security

Securing APIs is important, but we need a holistic ap-
proach to security. This is especially a challenge through-
out the IoT, since very important assets such as the lock
on our house or car will be made available online.

https://www.youtube.com/watch?v=tj03NRM6SP8

Introducing API Security Concepts 8

“The dangers lie in the seams between the
devices and the Internet and that iswhat needs
to be carefully handled” - Brian Mulloy, Apigee

According to Brian Mulloy, web developers know how to
handle security on the Internet using OAuth and OpenID
Connect. At the same time, device makers have experi-
ence in securing the physical devices themselves. It is im-
portant to think about security end-to-end, from physical
device all theway up to an app interactingwith that device
via an API. One weak link can break the whole chain.

1.10 Using Proven Standards

Good API security is an enabler. Unless end users and
developers can trust your API, none of the business goals
you have defined will be fulfilled. Some reccomend that
you do not build your API security solution yourself, but
rather base your security on known standards and battle
tested products. Keep reading for actionable insights into
each section covered in this summary chapter.

https://www.youtube.com/watch?v=ogrHFkLIIAk

2. The 4 Defenses of The API
Stronghold

At one point or another, your secure resources will be
attacked. This is the unfortunate reality of the modern
era, where the skills necessary to invasively crack open
a system, network, or API are more commonplace than
ever. Millions in resources and potential revenue can
be lost in a matter of hours due to poor planning or
implementation of a security protocol.

Private information, trade secrets, and even personal
data can be exposed to the skilled network penetrator
and used against you in ways that are as extreme as they
are varied. This chapter aims to bolster your defenses by
defining the four foundations of API security: Authenti-
cation, Authorization, Federation, and Delegation.

9

The 4 Defenses of The API Stronghold 10

The Importance of Comprehension

One of the most common failures of understanding in
the development of API security is the idea that security
is a “one size fits all” solution. The idea that channels
of security function in a singular manner with variations
only in the final end-user experience is as wrong as it is
dangerous; this concept places the operator in a position
of fewer tools at their disposal than those trying to “break
the system”, in turn exposing your data to an extreme
level of unnecessary risk.

This issue ismadeworse by a commonmisunderstanding
regarding the differences between Authorization, Au-
thentication, Federation, and Delegation — perpetu-
ating a gulf of misinformation and misapplication. This
chasm has caused many security woes in the API space.

Given that these four terms are what the entire con-
cept of API security rides on, it is imperative that you
understand them, their uses, and the implications of their
adoption. Lacking a basic understanding of security pro-
tocols, methodologies, and concepts can mean the dif-
ference between a prosperous, growth-oriented business
and a stagnant, deprecating business.

2.1 Balancing Access and Permissions

Having an API that allows for full access to the entirety
of your systems and resources is an absolute nightmare
— it’s akin to being the lord of a castle, and leaving the
doors to your vault wide open— it entices theft by its very
nature, and unnecessarily opens your materials to the
public space. As lord of your keep, why give marauders
an avenue for attack?

The 4 Defenses of The API Stronghold 11

What then is the proper response? Do we leave systems
open for the betterment of functionality and assume
users have positive intentions? Or do we follow a com-
plete opposite route, closing down every bit of function-
ality, designing only proprietary systems?

The solution lies in combination of both approaches.
Assume your foe is out to get you at all times — but
don’t let this affect your need to do business. Constant
vigilance allows you to design your API in an intelligent
way, opening only that which needs to be opened, and
making sure those openings don’t tie into vital systems
that could be damaged. Functionally, this means assign-
ing elements of authority to API consumers based on the
minimal amount of access they need to do the functions
they are required to do. By assigning different roles and
levels of responsibilities to clients, we can create a tiered
environment that keeps our data safe.

Understanding the implications of this system is of prime
importance — specifically the differences between the
types of rights and authorities within the system as a
whole. In our definitions, we’ll hark back to our castle
defense analogy. The brave and powerful knight Lancelot
is trying to return to the Arthurian court after a long
month of fighting bloodthirsty marauders — let’s see
what defenses he will have to pass…

The 4 Defenses of The API Stronghold 12

2.2 Authentication: Identity

“‘Tis I Lancelot cometh, bearing the password ‘Guinevere.’” Au-
thentication is two-fold, establishing trust with identity and a
secret code.

Authentication is a base security layer that deals specif-
ically with the identity of the requesting party. Think of
authentication as an agreement based on trust. When
Lancelot reaches your drawbridge, he shouts his name
along with a secret code to a guard stationed on the
castle wall above. These two forms of identification will
ensure that Lancelot is identified only as Lancelot, and that
Lancelot is allowed to enter the castle.

In the real world, this level of security can take multiple
forms.When a user chooses to request data or resources,
they can face a number of protocols, log-in systems, and

The 4 Defenses of The API Stronghold 13

verification services. For instance, a user could log in using
an authentication service that only requires a username
and password. For greater levels of assurance, they may
then be asked to provide a single-use token generated on
a mobile device or keyfob.

2.3 Authorization: Access

“Says here you’re Round Table status.” Authorization considers
what access level the user has with the system. [Image: CC-BY-
SA-3.0 via Wikimedia Commons]

Authorization is a completely separate level of security,
though it’s often confused with authentication; while au-
thentication verifies that the requester is who they say
they are, authorization determines the access level they
should be granted.

As Lancelot waits for the drawbridge to come down and
allow him in, the guard steps back and checks his “Ye Olde
Book of Permissiones” tomake sure Lancelot has the right
to enter the castle. This is different from Authentication.
Whereas Lancelot proved he was who he said he was,
Authorization makes sure he has the right to enter the

http://nordicapis.com/3-unique-authorization-applications-of-openid-connect/
http://www.webopedia.com/TERM/K/key_fob.html

The 4 Defenses of The API Stronghold 14

castle, and if he indeed has that right, what levels he can
accesswithin the castle. These permissions are granted to
Lancelot by King Arthur, allowing Lancelot access to The
Round Table, among other resources that peasants can’t
access.

Authorization is extremely important, but is often over-
looked. It is very easy for API developers to assume that,
because they need access to the API for their systems, set-
ting the user default permissions to “SysOp” or equivalent
full access is acceptable. This is a faulty line of thinking.
While the developer inherently requires a higher level of
access than the typical user, a consumermay only need
a small portion of calls or functions at any one time.
In that situation, leaving excess operations open makes
the system more vulnerable to hacks and unauthorized
access.

2.4 Federation: Reusing Credentials &
Spreading Resources

Federated security is a multi-purpose system:

• for users, federated security systems allow for the
use of a small set of credentials with multiple sys-
tems, services, applications, or websites.

• for administrators, federated security allows for
the separation between the resources requested by
the user and the systems used to authenticate and
grant authority to the user.

• For organizations, it allows them to centrally man-
age the trust relationships they have with one an-
other and ensure, cryptographically, that that trust
is enforceable.

https://msdn.microsoft.com/en-us/library/ff359110.aspx
https://msdn.microsoft.com/en-us/library/ff359110.aspx

The 4 Defenses of The API Stronghold 15

Same User Credentials Across Multiple Services

With federation, the user is granted the ability to use
the same set of credentials across multiple services. By
having the authentication take place in one single domain,
other security realms that trust this primary domain can
reuse the authentication and trust the authenticity of the
identity established. This results in what is to what is
called a federation.

Any system in this federation can accept the credentials of
the authentication domain. The primary domain is what
we call an Identity Provider (IdP) orAssertingParty (AP);
the other security domains that trust the IdP to authen-
ticate users are referred to as Relying Parties (RP) or
Service Providers (SP). Authentication and identity data
are passed between these parties using tokens. These To-
kens areminted by a system called a Security Token Ser-
vice (STS) or a Federation Service (OAuth Authorization
Server and an OpenID Connect Provider are examples of
an STS and a Federation Service, respectively.)

The end result is that a STS hands a token to the user after
they first log into that authentication service. When the
user then requests access to another domain, the domain
registers that the user already has a token, and grants it
access without requesting another log-in.

http://oauth.net/2/
http://oauth.net/2/
http://openid.net/connect/

The 4 Defenses of The API Stronghold 16

Introducing Realms

A federated backend stores resources across various systems,
allowing users to access multiple services with the same creden-
tials

The King knows that knights like Lancelot need to enter
his castle; he also knows that his castle is situated in a
very bad location, prone to raids. Because of this, the King
has set up another castle some miles away in a more
defensible position to house other precious resources.
He does this to ensure security between the main castle
and the more fortified castle that contains other valuable
treasures. This adds an entirely separate layer of security,
acting as a “buffer.” Federation allows for Single Sign-
on (SSO) across these different “security domains” or
“realms.”

In traditional systems that do not use Federation, the user

The 4 Defenses of The API Stronghold 17

would log into a server that is in a particular security
domain/realm. This domain would include not only this
authentication system but also the actual resources the
user is attempting to access.While this works fine in some
cases, if the authentication and authorization protocols
were to be broken or violated, then the barrier between
the resources and the user would also be broken. This
could allow an attacker to take complete control of the
domain.

When A Breach Occurs

With federated security, if a breach occurs in the Iden-
tity Provider, the Relying Parties can revoke the trust it
had previously placed in that party — not all systems
are compromised. Entry to all federated authentication
requests made by any user to the resource server are
refused. Imagine the King and his knights have retreated
to the fortified castle after the main castle was overrun
by raiders. They no longer allow entrance from people
requesting access to the fortified castle for fear that they
are actually raiders using stolen code words.

The 4 Defenses of The API Stronghold 18

2.5 Delegation: The Signet of (Limited)
Power

Delegation can be compared to a signet, carrying the seal and
permissions granted by an API provider

Delegation is another process bywhich access and rights
can be given to authorized users while maintaining a
relatively limited amount of access. Whereas federation
works by giving the user a token to use on multiple do-
mains, delegation works by authorizing a user to function
partially as if they were another user.

King Arthur, seeing the plight of Lancelot the Knight, has
decided to make future access to his Kingdom easier. He
creates a ring with his kingly seal set in pearl, and gives it
to Lancelot. He then instructs his subordinates to follow
Lancelot’s orders, given that they fall within his rights
as a Knight and do not exceed the authority previously
expressly given to him by the King. In this way, when

http://en.wikipedia.org/wiki/Delegation_%28computer_security%29#Delegation_at_Authentication.2FIdentity_Level

The 4 Defenses of The API Stronghold 19

Lancelot presents his signet, he is seen to be acting under
the orders of the King, and does not need to further verify
himself or be authenticated.

For web users, this is done on a site-by-site basis. For ex-
ample, let’s assume theuser is trying to log in to “http://mail.corporate.org”.
Under the federation system, they would first have to
login on a designated portal page to access any additional
resources in the federation using their token. Under the
delegation system, “http://mail.corporate.org” would look
to see what rights they have been given and who they are
acting onbehalf of. As the user is coming from “http://profile.corporate.org”
and has already logged in on that page using an authen-
ticated account with elevated privelages, the mail server
allows access.

2.6 Holistic Security vs. Singular
Approach

Most important to all of these considerations is the way
we treat the fundamental security system we are imple-
menting. Far too often, developers fall into the trap of
considering security to be one-sided. An average user
might consider having three authentication devices to be
a good security check; but if that authentication server
were to ever go offline, you could have an infinite number
of authentication-based security systems and your net-
work would still be exposed. By thinking of security as
a singular approach rather than a holistic one, you are
placing your API and your system in far more danger
than is necessary.

Consider security from the constraints of our story con-
cerning Lancelot, and put yourselves in the rather silky,
comfortable shoes of the noble and wise King Arthur.

The 4 Defenses of The API Stronghold 20

You know invaders are coming; in fact, you can see them
crossing themountain now, preparing to invade. Examine
your security, and really contemplate your entire API
Stronghold.

Would you consolidate all your jewels and gold in one
fortress and defend with all men on a single wooden
gate? — OR — would you rather spread your wealth
across multiple fortresses each with an impassable moat,
amannedwooden gate, amannedmetal gate, and armed
warriors waiting just beyond? Operationally, costsmay be
the same, but the security is drastically different. In the
first scenario, the enemy would only have to destroy the
wooden gate once to get into your castle, whereas in the
second scenario, they would have to pass four separate
and daunting obstacles to even get a peek at a single
inner keep. A multi-layered stronghold is how you must
consider security in the API space.

2.7 Application For APIs

When establishing a security system for your API, under-
standingAuthentication,Authorization, Federation, and
Delegation is vitally important. Deciding the access and
specific circumstances behind sharing your resources will
help establish a security shield to protect internal assets
and solve many security issues before they arise.

For the modern system administrator, there is a wide
rangeof tools and services available thatmake implemen-
tation of any of these types of security relatively pain-
free. Services like OAuth and OpenID Connect can be
integrated early in the development cycle of the API, and
third-party authentication services can even be imple-
mented after the API is deployed.

http://nordicapis.com/api-security-oauth-openid-connect-depth/

The 4 Defenses of The API Stronghold 21

While all the above systems can work in tandem with one
another, knowing when and where each are best applied
makes for a better system on the whole, improving your
security, usability, and longevity. In the following chapters
we embark on a more specific journey to define these
actors and workflows.

3. Equipping Your API With
the Right Armor: 3
Approaches to
Provisioning

APIs are as vast and varied as the systems that depend
on them; while some systems may handle client data,
payments, and collaborative research, other APIs may
handle less important data such as social media and
image sharing.

Due to the variations in application and usage, APIs face

22

Equipping Your API With the Right Armor: 3 Approaches to
Provisioning 23

a unique set of considerations and issues arising from
their availability that no other system faces - the differ-
ence between having an API for public consumption or
one intended for internal use, in certain circumstances,
can mean the difference between megalithic success and
catastrophic failure.

Understanding the specific business objectives involved
in making your API private or public is paramount. In this
chapter, we will identify the difference between Public,
Private, and Partner APIs, and when each type makes
sense in different scenarios. We’ll also tackle a few ex-
amples of failure in API restriction and documentation, as
well as a few success in design and development.

3.1 Differences In API Approaches:
Private, Public, & Partner APIs

When considering the interaction between APIs and their
intended markets, there are three general approaches to
licensing and availability.

Private APIs are APIs intended
to streamline internal operations,
translating calls in a hidden way.
While theymay be documented, this
documentation is largely limited and
is meant for internal purposes only.
Development is handled entirely by

the creators of the API, and no derivations are allowed.
While this type of development and implementation cycle
can be very effective in creating and maintaing acceler-
ated growth, your API is limited by what you have de-
signed it to do — your API will not evolve with the times

http://nordicapis.com/developing-the-api-mindset-private-partner-and-public-apis/
http://nordicapis.com/developing-the-api-mindset-private-partner-and-public-apis/
http://nordicapis.com/achieve-accelerated-growth-apis/
http://nordicapis.com/achieve-accelerated-growth-apis/

Equipping Your API With the Right Armor: 3 Approaches to
Provisioning 24

andneeds of themarketplace unless you specifically force
it to, which can be both time and money intensive.

Public APIs are APIs that have cer-
tain public access, working more
transparently and allowing other
users, services, and systems to tie
into parts of the underlying inter-
face. These APIs are usually heavily
documented, as they will be used

publicly by developers to utilize the API for various ser-
vices. For some very transparent Public APIs, “Forking” the
API — creating new derivations of the API — is open to
any who wish to do so, making it evolve organically. This
is rare though, as most public web APIs are still closed-
source, allowing a company tomaintain full ownership. In
general, Public APIs allow a third-party developer ecosys-
tem to be created with your data or services, an organic
evolution with new posibilities and services, potentially
resulting in explosive and sustained accelerated growth.
The downside of a Public API is that it could decrease the
value of your main distribution channels, and, in some
situations, direct monetization opportunities that would
arise from a more locked-down Private or Partner API.

Partner APIs are B2B APIs that are
exposed through agreements be-
tween the developer and the client,
outlining the application and use of
the API. Documentation is usually
thorough, but only for those inter-
face calls that will be used by the

business as defined in the contractual license; other func-
tionality is locked down, undocumented, or requires au-
thorization and authentication to utilize. Such an API is
highly effective and can be extremely lucrative. Deriva-

http://nordicapis.com/accelerating-growth-a-case-for-opening-up-your-core/

Equipping Your API With the Right Armor: 3 Approaches to
Provisioning 25

tions can be contracted out, but all of the API develop-
ment is synthetic and directed rather than organic.

3.2 Considerations and Caveats

What, then, is the choice that drives one business to the
Public API model, and another to the Partner API? When
considering the type of API licensing and availability, sev-
eral considerations should be made at the beginning of
the API Lifecycle, as they can fundamentally change the
approach to the development of your API by changing the
methodology of implementation.

Firstly, consider the nature of the data and systems that
your API will reference. When designing an API that taps
into secure, personal data, such as social security num-
bers, payment records, and general identification ser-
vices, the amount of security needed for your API shifts
the balance drastically towards a consideration of either
private or business-to-business licensing.

This is largely due to the vulnerability of public-facing
API code and documentation. Think of your licensing as
a suit of armor. While plate armor is heavy and makes
movement hard, it is extremely secure. Leather armor,
on the other hand, is extremely light and flexible, grant-
ing extreme agility. Your licensing is much the same —
Private APIs being plate armor, and open-source Public
APIs being leather. Business-to-business Partner APIs are
like chain mail— somewhere in the middle in terms of
granting agility and protection. While the use of Public
APIs can be somewhat controlled (or tanned in the spirit
of our armor metaphors), they will never be as secure as
a closed-source and plated Private API.

Secondly, consider the amount of upkeep you wish to

http://nordicapis.com/api-lifecycle-analysis-stage-preparing-your-api-strategy-pre-launch/
http://nordicapis.com/api-lifecycle-analysis-stage-preparing-your-api-strategy-pre-launch/
http://nordicapis.com/should-you-control-how-your-public-api-is-used/
http://nordicapis.com/should-you-control-how-your-public-api-is-used/

Equipping Your API With the Right Armor: 3 Approaches to
Provisioning 26

perform. All API types can have arduous, long, and expen-
sive development cycles, relying on proprietary systems
and interfaces. Costs and resources may be extended for
Public APIs in order to maintain public-facing developer
portals and upkeep external support systems such as
marketing channels, hackathons, and other API product
operations.

Finally, monetization should be considered. While closed-
source Private APIs can be monetized through improved
operational efficiency and content promotions, Partner
APIs can be licensed at a fee for direct revenue; open-
source Public APIs can also be monetized through the
direct sale of data and other methodologies.

3.3 So Where Is The Middle Ground?

So where, then, is the line? What is the ideal combination
of security, access conditions, and monetization for your
specific situation? Functionally, your API should only be as
public-facing as it is required to be by its functions, its de-
signs, the limitations of your business, and the objectives
of its implementation.

For example, if one were developing an API that would
use data provided by third party vendors to collate data
for analytics, what would be an appropriate amount of
exposure? Given the nature of the data, and the security
requirements likely put in place by the vendors, a Partner
API would be appropriate; after all, other partners will
have to tie in to your API to deliver data, and you will need
to provide a certain amount of documentation for that to
occur.

Conversely, if we were designing an API that delivers
social media or RSS feeds to a user, what would be an

http://nordicapis.com/api-lifecycle-operations-stage-marketing-your-api/
http://nordicapis.com/api-lifecycle-operations-stage-marketing-your-api/
http://nordicapis.com/top-5-api-monetization-models/
http://nordicapis.com/top-5-api-monetization-models/
http://nordicapis.com/open-data-how-to-make-it-work-for-your-business/

Equipping Your API With the Right Armor: 3 Approaches to
Provisioning 27

appropriate type of exposure? In this case, because the
data is entirely open, is not tying into systems, and utilizes
public data, a Public API is appropriate. In this scenario,
open-source is perfect, as it allows the maximum num-
ber of users to utilize the API and improve it over time,
utilizing collaboration services like GitHub and Bitbucket
to revise and fork the API into bigger and better systems;
if the API were ever to deal with confidential data, third-
party vendors, etc., this would change, but as it is, the
level of exposure is absolutely appropriate to the use-
case scenario.

Your considerations should be a broad spectrum of mon-
etization opportunities, upkeep cost, and more, but in
terms of security, developers should always follow the
rule of simplicity — expose only what needs to be
exposed.

3.4 Real-World Failure

In late 2014, social media giant Snapchat faced a large
security failure in their undocumented API discovered by
security firm GibSec. Because of the nature of their API
— B2B and semi-private — third party apps were able to
connect to the service in such a way that the servers and
systems connected were made vulnerable.

One vulnerability in the API, utilizing an authenticated,
authorized call to the /ph/find_friends request, opened
the Snapchat system to hackers in a way the developers
never even considered; after calculating the number of
Snapchat users and the amount of requests that could be
completed in aminute, GibSec estimated that all 8 million
users could have their personal data, phone numbers,

https://github.com/
https://bitbucket.org/
http://techcrunch.com/2015/04/03/why-your-favorite-snapchat-apps-no-longer-work/
http://techcrunch.com/2015/04/03/why-your-favorite-snapchat-apps-no-longer-work/
http://gibsonsec.org/snapchat/fulldisclosure/
http://gibsonsec.org/snapchat/fulldisclosure/
http://www.zdnet.com/article/researchers-publish-snapchat-code-allowing-phone-number-matching-after-exploit-disclosures-ignored/
http://www.zdnet.com/article/researchers-publish-snapchat-code-allowing-phone-number-matching-after-exploit-disclosures-ignored/

Equipping Your API With the Right Armor: 3 Approaches to
Provisioning 28

and even images scraped by an average server in approx-
imately 26.6 hours (which was a conservative estimate).

So how did the API fail? Functionally, there was a mis-
match between the documented access and the actual
restrictions on those features.While the API was designed
to be a Partner API, it was documented with these part-
ners in the same way a Public API is.

While it’s true that if the API were more public vulner-
abilities could have been detected and fixed before it
became a larger issue, the fact of the matter is that the
API did not need to be open in the first place. By not prop-
erly managing the data and allowing unvetted companies
and developers access to the Snapchat API and internal
systems, Snapchat was unnecessarily exposed and made
vulnerable.

Additionally, the fact that Snapchat did not adhere to
a singular approach was extremely detrimental. If the
system were 100% internal, a team would likely have
been monitoring the API, and would have come across
the issue far before it was actually discovered. If the API
were B2B alone, the vulnerability would have not been an
issue, as the calls would have required authentication and
authorization far above that of a normal user, preventing
the leak from occurring. Finally, if the API were completely
public, it is likely that the vulnerability would have been
discovered earlier, perhaps through the efforts of so-
called “white hat hackers” testing vulnerabilities for fun
or by common usage.

Neither plate, leather, or chain, the Snapchat failed be-
cause it was occupying a strange space between API
approaches. Since the necessary preparation in defining
the API premise was not performed, API access was not
well-maintained, leaving a gaping vulnerability present.

http://www.zdnet.com/article/researchers-publish-snapchat-code-allowing-phone-number-matching-after-exploit-disclosures-ignored/
http://www.zdnet.com/article/researchers-publish-snapchat-code-allowing-phone-number-matching-after-exploit-disclosures-ignored/
http://www.zdnet.com/article/researchers-publish-snapchat-code-allowing-phone-number-matching-after-exploit-disclosures-ignored/
http://www.techopedia.com/definition/10349/white-hat-hacker

Equipping Your API With the Right Armor: 3 Approaches to
Provisioning 29

3.5 Two Real-World Successes

Lego

LEGO, the famous brick-toy company from Denmark, has
spent most of its existence making sure that their toys
were fun, creative, and safe. As LEGO launched into the
modern era, they began to seriously consider developing
their ownAPI, focusing largely on extending that creativity
and security into the world wide web. Below, Dennis
Bjørn Petersen discusses the development, challenges,
and successes of their closed-source Private API.

The success of the LEGO story demonstrates exactly why
an API needs to have determined limits when it comes to
source disclosure. Due to the nature of the data LEGO is
handling, and the young age of its target audience, the
API that was developed was locked down in a Private API
environment. This development, isolated from exposure,
made sure that the system was safe and effective.

Carson City, Nevada

Another great API success story is that of Carson City,
Nevada. Whereas the success of the LEGO API was due to
its closed nature and purposeful design, for Carson City,
the integration of an API utilizing both the assets of city
infrastructure systems and the collaboration of various
private and public partners demonstrates success in the
Partner API space.

When Carson City set out to design their smart city sys-
tem, they formed a partnership between the Carson City
Public Works Department, the citizens of Carson City, and
Schneider Electric. The city packaged open data gener-

http://en.wikipedia.org/wiki/Lego
https://twitter.com/dennisbp
https://twitter.com/dennisbp
http://www.carson.org/index.aspx?page=163
http://www.carson.org/index.aspx?page=163
http://software.invensys.com/
http://nordicapis.com/apis-power-the-internet-of-things/

Equipping Your API With the Right Armor: 3 Approaches to
Provisioning 30

ated by various smart devices around the city into a Part-
ner API designed specifically for optimization, reporting,
and planning. Carson City officials were able to accom-
plish some pretty amazing things, converting their city
into a true smart city. According to the final report filed
by Schneider Electric, there were many benefits:

• Management of the city’s power plants was stream-
lined

• The water management systemwas drastically opti-
mized.

• Maintenance operationswere cut froma 5 to a 4 day
week.

• Staff hours were saved in the form of reduced “drive
time” between locations By designing their API to
function specifically for the purpose intended — in
a limited circumstance with secure, defined, and
vetted partners— Carson City set themselves up for
massive success with real lucrative results.

3.6 Conclusion

Contemplating the licensing, accessibility, and fundamen-
tal availability of your API should be your first step in
the API Lifecycle. The complexity of situations presented
by your choice in this initial step can impact your APIs
success, longevity, and usefulness. While security is, as
always, a chief concern in initial considerations, the mon-
etization of your API, the availability of the system, and the
user-friendliness of that system as a whole is dependent
entirely on the approach taken.

Let’s review the benefits of each approach:

http://nordicapis.com/apis-power-the-internet-of-things/
http://nordicapis.com/apis-power-the-internet-of-things/
http://nordicapis.com/how-apis-are-driving-smart-cities/
http://iom.invensys.com/EN/pages/SuccessStoriesDetail.aspx?company=Carson
http://iom.invensys.com/EN/pages/SuccessStoriesDetail.aspx?company=Carson
http://nordicapis.com/envisioning-the-entire-api-lifecycle/

Equipping Your API With the Right Armor: 3 Approaches to
Provisioning 31

• Leather Armor Public APIs can have a wide adop-
tion rate and potential to spread brand awareness.

• Plated Armor Private APIs allow for increased se-
curity and internalmanagement. Keep it secret, keep
it safe.

• ChainMail Partner APIs are perhaps the Goldilock-
ian Mithril for your B2B integration situation, allow-
ing a mix of both security and defined partnership
potential.

More than any other consideration, your particular pur-
pose for developing an API will determine the choice you
make. Enter the API economy brandishing the armor of
your choosing.

https://www.youtube.com/watch?v=_YhpauKGgQ4
https://www.youtube.com/watch?v=_YhpauKGgQ4
http://lotr.wikia.com/wiki/Mithril

4. Your API is Vulnerable: 4
Top Security Risks to
Mitigate

It’s an unfortunate reality that if a system faces the pub-
licly-served internet, chances are it will be attacked at
some point within its lifecycle. This is simply a matter of
statistics — given the number of users utilizing APIs, the
Internet of Things, and the dynamic World Wide Web, an
attack is statistically more likely than unlikely. According
to a report from The Hill, cyber-attacks increased 48%
during 2014.

32

http://nordicapis.com/the-state-of-iot-information-design-why-every-iot-device-needs-an-api/
http://thehill.com/policy/cybersecurity/221936-study-cyber-attacks-up-48-percent-in-2014
http://thehill.com/policy/cybersecurity/221936-study-cyber-attacks-up-48-percent-in-2014

Your API is Vulnerable: 4 Top Security Risks to Mitigate 33

Despite this grim reality, API providers often consider se-
curity to be “someone else’s problem”. Weak points in an
API construct can expose customer data, backend server
appliances, and even monetary systems to unauthorized
access, putting your API and business at risk.

So what should one look out for to avoid an attack? In this
chapter we present four top security risks and concerns
that every API provider needs to consider — along with
how to mitigate them.

4.1 Gauging Vulnerabilities

Beforewe can truly appreciate the errorsmost commonly
committed by API developers, we need to understand
what constitutes a vulnerability and how they are mea-
sured.

When identifying vulnerabilities, an API provider or devel-
oper should ask themselves, “does this expose something
that shouldn’t be exposed?” It can be a simple, small
exposure, such as allowing someone to access the root
file path on a server, or something as complex as failing
to plan for complex denial of service methods that utilize
exposed resources to deny authentication services to
legitimate users.

In the last chapter, we used armor as a metaphor for
the types of licenses inherent in the API system. This
metaphor holds true for vulnerabilities as well — while
you might have a wonderful suit of steel armor, replete
with plates, spines, and reinforcing braces, if you lack a
simple Gorget, a series of plates protecting the throat,
you would be vulnerable to defeat with a single blow.
An entire system can only be considered as secure as its
weakest part.

http://www.cisco.com/c/en/us/td/docs/wireless/mse/3350/7-2/wIPS_Configuration/Guide/wIPS_72/msecg_appA_wIPS.html#wp1345742
https://en.wikipedia.org/wiki/Gorget
http://nordicapis.com/securing-your-datastream-with-p2p-encryption/
http://nordicapis.com/securing-your-datastream-with-p2p-encryption/

Your API is Vulnerable: 4 Top Security Risks to Mitigate 34

4.2 Black Hat vs. White Hat Hackers

Not all possible “exploits” are identified internally. There
are a great deal of hackers throughout the World Wide
Web who try to gain access to a service, but do so not for
the purpose of malicious use.

In the hacking world, there are two categories into which
the majority of hackers can be broadly categorized —
Black Hats andWhite Hats.

The Black Hat hacker is most commonly discussed within
the security community, and are thus part of the public
consciousness. When people think of hackers, they are
usually thinking of Black Hats — hackers typing away
at a server console screen, attempting to illicitly bypass
security measures for personal gain or enjoyment.

These dangerous hackers may immediately utilize an ex-
ploit—many Black Hats will find an exploit, and bide their
time until either authorization or authentication road-
blocks can be similarly bypassed or a zero day exploit
embedded in the system is utilized.

Of more use to API developers, however, is the White Hat
hacker. These hackers utilize the same tools and tech-
niques as Black Hats, but for a wildly different purpose
— to increase security. These hackers, often hired by com-
panies to test security, identify exploits and vulnerabilities

https://en.wikipedia.org/wiki/Black_hat
http://nordicapis.com/day-0-flash-exploits-versioning-and-the-api-space/
https://en.wikipedia.org/wiki/White_hat_%28computer_security%29
https://en.wikipedia.org/wiki/White_hat_%28computer_security%29

Your API is Vulnerable: 4 Top Security Risks to Mitigate 35

for the sole purpose of reporting them to the API provider
and/or public in the hopes that they may be patched
before they are illicitly used.

Do not underestimate the value of hiring outside mem-
bers to commit penetration testing on your API. To
quote an old turn of phrase, “you can’t see the forest
from the trees”. Outside security testing can help identify
vulnerabilities, and rectify them before they become full-
on exposures.

4.3 Risk 1 - Security Relies on the
Developer

Many feel that security is as much the responsibility of
the developer consumer as it is a responsibility of the API
provider. In some cases, this is true due to the nature
of APIs — authentication exchanges, physical access, and
so forth should be partially secured by the one who is
requesting usage, especially in the case of B2B or Public
APIs.

However, as security is best implemented at the lowest
possible level, it should be the problem of the API devel-
oper (the API provider), and the API developer alone. All
other security solutions should spread from the base of
the API developer’s approach and guidance, and not the
other way around.

The philosophy of fostering an internal culture of security
encompassess awide variety of solutions and responsibil-
ities. Developer-centric security means correctly oversee-
ing versioning and dependencies, and properly handling
authentication and authorization along with delegation
and federation — a huge issue within the API space, as

http://nordicapis.com/first-or-third-party-apis/
http://nordicapis.com/first-or-third-party-apis/
http://nordicapis.com/securing-your-datastream-with-p2p-encryption/
http://nordicapis.com/securing-your-datastream-with-p2p-encryption/
http://nordicapis.com/fostering-an-internal-culture-of-security/
http://nordicapis.com/day-0-flash-exploits-versioning-and-the-api-space/
http://nordicapis.com/api-security-equipping-your-api-with-the-right-armor/
http://nordicapis.com/api-security-equipping-your-api-with-the-right-armor/

Your API is Vulnerable: 4 Top Security Risks to Mitigate 36

improper authorization and authentication policies can
lead to massive security breaches through the exposure
of administrator or sysop credentials. Improper session
handling and failure to properly verify delegation and fed-
eration routines can lead to session capture and replay
attacks.

The API developer consumer and end user can not help
with any of these in a meaningful way. Utilizing HTTPS,
SSL, SSH, and so forth is helpful, but cannot be done
without the API host first designing the system to utilize
these solutions.

Also of consideration is the fact that there is a stark differ-
ence between API Developers and API Providers. An API
Provider is the single body or group of bodies that creates
the initial API; an API Developer is a developer who ties
into this API, extends upon it, or otherwise implements it
in a service. Security, in this case, is easiest to implement
within the scope of the Provider, and should thus be the
approach taken when an API is in its infancy.

The takeaway - Secure Your System - It’s YOUR System!

4.4 Risk 2 - “Just Enough” Coding

Perhaps the biggest vulnerability is one that originates
earliest in the API development lifecycle — improper cod-
ing. Regardless of language of choice, poor error han-
dling, value checking, memory overflow prevention, and
more can lead not only to massive vulnerability issues,
but to fundamental issues of usefulness and functionality.
One phrase that sums up this style of coding is “Just
Enough” — the code in question is just enough for func-
tionality, or just enough for usability, without the greater
concern of how the code ties into the platform as a whole,

http://nordicapis.com/functional-vs-useful-what-makes-a-useful-api/

Your API is Vulnerable: 4 Top Security Risks to Mitigate 37

what security concerns are addressed or not addressed,
and how potential threats are handled.

The easiest way to present this is to show some basic
code snippets that, despite their usefulness to the API
functionality, expose the API in some pretty significant
ways.

First, let’s use an example of an image sharing API written
in Python. This API uploads images to a specific root of
a specific server for sharing amongst friends utilizing an
automatically generated URL system:

1 from django.core.files.storage import default_storage

2 from django.core.files.base import File

3 ...

4 def handle_upload(request):

5 files = request.FILES

6 for f in files.values():

7 path = default_storage.save('upload/', File(f))

8 …

This is a working service — but upon inspection, it fails
several important security checks. Firstly, there is no type
checking; a file of any type can be uploaded, meaning
that anybody can upload an executable and utilize the au-
tomatically generated URL to run the application natively
on the server. Secondly, the path for the uploaded file is
specified to the service directory root, meaning that the
application will have broad level access to the server.

Let’s look at another snippet. This example will be an
error report generated from improper command usage
in COBOL:

Your API is Vulnerable: 4 Top Security Risks to Mitigate 38

1 ...

2 EXEC SQL

3 WHENEVER SQLERROR

4 PERFORM DEBUG-ERR

5 SQL-EXEC.

6 ...

7 DEBUG-ERR.

8 DISPLAY "Error code is: " SQLCODE.

9 DISPLAY "Error message is: " SQLERRMC.

10 ...

While error handling and notification is vitally important,
the way this is handled above is flawed. When a Black
Hat attempts to utilize a malformed command, they will
instantly know two things:

• If the error is served via console (the default behav-
ior of many servers), the connection to the service,
despite being malformed, will be kept open.

• Secondly, that the server is vulnerable to SQL in-
jection. This type of error is known as an external
system information leak.

These may seem trivial to an out-
sider, but to a hacker, this is a trea-
sure-trove of information. Imagine
being a burglar who, through a sim-
ple phone call, and find out which
door is unlocked, which window im-
properly seated, where everyone is
sleeping, and where the valuables

are. The information gleaned above is tantamount to this
wealth of information, and serves the hacker a tremen-
dous benefit.

Your API is Vulnerable: 4 Top Security Risks to Mitigate 39

These types of errors are grave, indeed — simply under-
standing how your code functions and how the average
user will utilize system functionality can go a long way
towards securing these vulnerabilities and not exposing
system details.

4.5 Risk 3 - Misunderstanding Your
Ecosystem

The API world is a rapidly shifting place. As API architec-
tures evolve, and new, more expansive methodologies
for microservice development and management emerge,
the security issues inherent with each choice in the API
lifecycle naturally evolve alongside.

Unfortunately,manydevelopers seem
to adopt these new technologies
without fully understanding what
they mean for API security. It’s so
easy to adopt the “brightest and
best”, butwithout a similarly evolved
development mindset, vulnerabili-
ties can quickly become far larger than they have any right
to be.

For example, the innovations in cloud computing, espe-
cially in terms of the evolution of System-as-a-Service,
Platform-as-a-Service, and Infrastructure-as-a-Service plat-
forms, has led to a massive amount of data and com-
puting being handled off-site. What was once an environ-
ment of local resources and servers utilizing an API to
communicate with the outside world is becoming increas-
ingly decentralized.

While this is a good thing, it comeswith somepretty heavy
caveats and vulnerabilities. For example, utilizing side-

http://nordicapis.com/a-tale-of-four-api-designs-dissecting-common-api-architectures/
http://nordicapis.com/a-tale-of-four-api-designs-dissecting-common-api-architectures/
http://nordicapis.com/microservice-showdown-rest-vs-soap-vs-apache-thrift-and-why-it-matters/
http://nordicapis.com/living-in-the-cloud-stack-understanding-saas-paas-and-iaas-apis/
http://nordicapis.com/living-in-the-cloud-stack-understanding-saas-paas-and-iaas-apis/
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf

Your API is Vulnerable: 4 Top Security Risks to Mitigate 40

channel timing information, a virtual server sharing the
same physical space as that of an API virtual server could
theoretically hijack private cryptographic keys, according
to a research paper from the University of North Carolina.

Barring such virtual attacks, there is still the issue of
physical threats. Because a cloud server is not local to the
API developer, physical security cannot be maintained,
meaning hardware hosting secure password hashes or
user account files can be vulnerable to environmental
damage or malicious use.

Much of this can be negated. Proper server file security,
backups, and more can go a long way towards improving
security vulnerabilities of this type. But these solutions
can only be implemented if the issues are known —
and for many API developers who have moved legacy
or classically designed APIs to the cloud space without
first understanding the ecosystem, this is easier said than
done.

4.6 Risk 4 - Trusting the API Consumer
With Too Much Control

While much has been said about maintaining positive
user experience through the API lifecycle, average end-
users are the number one largest security risk an API can
ever have.

Regardless of the API type, language and syntax, or devel-
opment approach, an API is functionally secure until it’s
actually used.

Until your API receives its first request for information,
it lives in a veritable island of security — isolated, alone,
but ultimately untouchable. The second it receives that

http://www.cs.unc.edu/~reiter/papers/2012/CCS.pdf
http://nordicapis.com/top-5-development-tips-for-a-killer-api/
http://nordicapis.com/top-5-development-tips-for-a-killer-api/
http://nordicapis.com/using-spark-to-create-apis-in-java/
http://nordicapis.com/3-ways-to-build-microservices/
http://nordicapis.com/3-ways-to-build-microservices/

Your API is Vulnerable: 4 Top Security Risks to Mitigate 41

request, however, it’s wide open.Whendeveloping anAPI,
developers often trust the user far too much, allowing
too much data manipulation, not limiting password com-
plexity and usage, and sometimes even allowing repeat
session ID tokens. This is a huge issue.

That’s not to say you should treat
every user like a Black Hat — most
users are going to be legitimate, are
going to use the service how it was
intended, and will not be a security
vulnerability in and of themselves.
But, assuming that most of your

users are “good” users, that still leaves a good deal of “un-
knowns” who can use anything gleaned through average
use to break your system and access it illicitly.

Thus, you must assume every user is a vulnerability. Im-
plement password strength requirements, session length
and concurrent connection limitations, and even require
periodic re-authentication and authorization for contin-
ued use. Track usage and account metrics, and respond
to any deviation. Assume that even your best user is
subject to hijacking and malicious redirection, and plan
accordingly.

4.7 Conclusion

Byunderstanding these basic security risks and adequately
responding, API security risks can be largely mitigated.
While no system is ever going to be truly perfect, they
can at least be complex enough and complete enough to
deter all but the most ardent and dedicated hackers.

https://en.wikipedia.org/wiki/Password_strength
https://www.drupal.org/project/session_limit
https://www.drupal.org/project/session_limit
http://nordicapis.com/success-vs-failure-the-importance-of-api-metrics/

5. Deep Dive into OAuth
and OpenID Connect

OAuth 2 and OpenID Connect are fundamental to secur-
ing your APIs. To protect the data that your services ex-
pose, you must use them. They are complicated though,
so in this chapter we go into some depth about these
standards to help you deploy them correctly.

5.1 OAuth and OpenID Connect in
Context

Always be aware that OAuth and OpenID Connect are
part of a larger information security problem. You need to
take additional measures to protect your servers and the
mobiles that run your apps in addition to the steps taken
to secure your API. Without a holistic approach, your API
may be incredibly secure, yourOAuth server locked down,
and your OpenID Connect Provider tucked away in a safe
enclave. Your firewalls, network, cloud infrastructure, or
the mobile platform may open you up to attack if you
don’t also strive to make them as secure as your API.

42

Deep Dive into OAuth and OpenID Connect 43

To account for all three of these security concerns, you
have to know who someone is and what they are allowed
to do. To authenticate and authorize someone on your
servers, mobile devices, and in your API, you need a
complete Identity Management System. At the head of
API security, enterprise security and mobile security is
identity!

Only after you know who someone (or something) is can
you determine if they should be allowed to access your
data. We won’t go into the other two concerns, but don’t
forget these as we delve deeper into API security.

5.2 Start with a Secure Foundation

To address the need for Identity Management in your
API, you have to build on a solid base. You need to es-
tablish your API security infrastructure on protocols and
standards that have been peer-reviewed and are seeing
market adoption. For a long time, lack of such standards
has been the main impediment for large organizations
wanting to adopt RESTful APIs in earnest. This is no longer
the case since the advent of the Neo-security Stack:

Deep Dive into OAuth and OpenID Connect 44

This protocol suite gives us all the capabilities we need to
build a secure API platform. The base of this, OAuth and
OpenID Connect, is what we want to go into in this blog
post. If you already have a handle on these, learn more
about how the other protocols of the Neo-security Stack
fit together.

5.3 Overview of OAuth

OAuth is a sort of “protocol of protocols” or “meta proto-
col,” meaning that it provides a useful starting point for
other protocols (e.g., OpenID Connect, NAPS, and UMA).
This is similar to the way WS-Trust was used as the basis
for WS-Federation, WS-SecureConversation, etc., if you
have that frame of reference.

Beginning with OAuth is important because it solves a
number of important needs thatmost API providers have,
including:

• Delegated access
• Reduction of password sharing between users and
third-parties (the so called “password anti-pattern”)

• Revocation of access

http://www.twobotechnologies.com/blog/2012/08/xacml-w-openid-connect-saml-oauth-and-scim.html
http://www.twobotechnologies.com/blog/2012/08/xacml-w-openid-connect-saml-oauth-and-scim.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/wg/napps/
https://docs.kantarainitiative.org/uma/draft-uma-core.html

Deep Dive into OAuth and OpenID Connect 45

When the password anti-pattern is followed and users
share their credentials with a third-party app, the only
way to revoke access to that app is for the user to change
their password. Consequently, all other delegated access
is revoked as well. With OAuth, users can revoke access
to specific applications without breaking other apps that
should be allowed to continue to act on their behalf.

5.4 Actors in OAuth

There are four primary actors in OAuth:

1. Resource Owner (RO): The entity that is in control
of the data exposed by the API, typically an end user

2. Client: The mobile app, web site, etc. that wants to
access data on behalf of the Resource Owner

3. Authorization Server (AS): The Security Token Ser-
vice (STS) or, colloquially, the OAuth server that is-
sues tokens

4. Resource Server (RS): The service that exposes the
data, i.e., the API

Deep Dive into OAuth and OpenID Connect 46

5.5 Scopes

OAuth defines something called “scopes.” These are like
permissions or delegated rights that the Resource Owner
wishes the client to be able to do on their behalf. The
client may request certain rights, but the user may only
grant some of them or allow others that aren’t even
requested. The rights that the client is requested are
often shown in some sort of UI screen. Such a page may
not be presented to the user, however. If the user has
already granted the client such rights (e.g., in the EULA,
employment contract, etc.), this page will be skipped.

What is in the scopes, how you use them, how they are
displayed or not displayed, and pretty much everything
else to do with scopes are not defined by the OAuth spec.
OpenID Connect does define a few, but we’ll get to that in
a bit.

5.6 Kinds of Tokens

In OAuth, there are two kinds of tokens:

1. Access Tokens: These are tokens that are presented
to the API

2. Refresh Tokens: These are used by the client to get
a new access token from the AS

(Another kind of token that OpenID Connect defines is the
ID token. We’ll get to that in a bit.)

Think of access tokens like a session that is created for
you when you login into a web site. As long as that
session is valid, you can continue to interact with the web

Deep Dive into OAuth and OpenID Connect 47

site without having to login again. Once that session is
expired, you can get a new one by logging in again with
your password. Refresh tokens are like passwords in this
comparison. Also, just like passwords, the client needs
to keep refresh tokens safe. It should persist these in a
secure credential store. Loss of these tokens will require
the revocation of all consents that users have performed.

5.7 Passing Tokens

As you start implementingOAuth,
you’ll find that you have more
tokens than you ever knew
what to do with! How you pass
these around your system will

certainly affect your overall security. There are two dis-
tinct ways in which they are passed:

1. By value
2. By reference

These are analogous to the way programming language
pass data identified by variables. The run-time will either
copy the data onto the stack as it invokes the function
being called (by value) or it will push a pointer to the data
(by reference). In a similar way, tokens will either contain
all the identity data in them as they are passed around or
they will be a reference to that data.

If you pass your tokens by reference, keep in mind that
you will need a way to dereference the token. This is
typically done by the API calling a non-standard endpoint
exposed by your OAuth server.

Deep Dive into OAuth and OpenID Connect 48

5.8 Profiles of Tokens

There are different profiles of tokens as well. The two that
you need to be aware of are these:

1. Bearer tokens
2. Holder of Key (HoK) tokens

You can think of bearer tokens like cash. If you find a
dollar bill on the ground and present it at a shop, the
merchant will happily accept it. She looks at the issuer of
the bill, and trusts that authority. The saleswomendoesn’t
care that you found it somewhere. Bearer tokens are the
same. The API gets the bearer token and accepts the con-
tents of the token because it trusts the issuer (the OAuth
server). The API does not know if the client presenting the
token really is the onewho originally obtained it. Thismay
or may not be a bad thing. Bearer tokens are helpful in
some cases, but risky in others. Where some sort of proof
that the client is the one to who the token was issued for,
HoK tokens should be used.

HoK tokens are like a credit card. If you findmy credit card
on the street and try to use it at a shop, the merchant will
(hopefully) ask for some form of ID or a PIN that unlocks
the card. This extra credential assures the merchant that
the one presenting the credit card is the one to whom it
was issued. If your API requires this sort of proof, you will
need HoK key tokens. This profile is still a draft, but you
should follow this before doing your own thing.

NOTE: You may have heard of MAC tokens from an early
OAuth 2 draft. This proposal was never finalized, and this
profile of tokens are never used in practice. Avoid this
unless you have a very good reason. Vet that rational on

https://tools.ietf.org/html/draft-ietf-oauth-proof-of-possession
https://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac

Deep Dive into OAuth and OpenID Connect 49

the OAuth mailing list before investing time going down
this rabbit trail.

5.9 Types of Tokens

We also have different types of tokens. The OAuth spec-
ification doesn’t stipulate any particular type of tokens.
This was originally seen by many as a negative thing.
In practice, however, it’s turned out to be a very good
thing. It gives immense flexibility. Granted, this comes
with reduced interoperability, but a uniform token type
isn’t one area where interop has been an issue. Quite the
contrary! In practice, you’ll often find tokens of various
types and being able to switch them around enables
interop. Example types include:

• WS-Security tokens, especially SAML tokens
• JWT tokens (which I’ll get to next)
• Legacy tokens (e.g., those issued by a Web Access
Management system)

• Custom tokens

Custom tokens are the most prevalent when passing
themaround by reference. In this case, they are randomly
generated strings. When passing by val, you’ll typically be
using JWTs.

JSON Web Tokens

JSON Web Tokens or JWTs (pronounced like the English
word “jot”) are a type of token that is a JSONdata structure
that contains information, including:

http://www.ietf.org/mail-archive/web/oauth/current/maillist.html
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet#Session_ID_Properties
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet#Session_ID_Properties

Deep Dive into OAuth and OpenID Connect 50

• The issuer
• The subject or authenticated uses (typically the Re-
source Owner)

• How the user authenticated and when
• Who the token is intended for (i.e., the audience)

These tokens are very flexi-
ble, allowing you to add your
own claims (i.e., attributes or
name/value pairs) that repre-
sent the subject. JWTs were
designed to be light-weight
and to be snuggly passed
around in HTTP headers and query strings. To this end,
the JSON is split into different parts (header, body, signa-
ture) and base-64 encoded.

If it helps, you can compare JWTs to SAML tokens. They are
less expressive, however, and you cannot do everything
that you can do with SAML tokens. Also, unlike SAML they
do not use XML, XML name spaces, or XML Schema. This
is a good thing as JSON imposes a much lower technical
barrier on the processors of these types of tokens.

JWTs are part of the JSON Identity Suite, a critical layer
in the Neo-security Stack. Beyond JWT, the JSON identity
suite of protocols includes:

• JWK: JSON web key is a data structure that sets up
the protocols for defining asymmetric and symmet-
ric keys

• JWE: JSON web encryption is a compact web en-
cryption format, ideal for space-constrained envi-
ronments

• JWS: JSON web signatures enable multiple signa-
tures to be applied to the same content

http://www.slideshare.net/2botech/the-jsonbased-identity-protocol-suite

Deep Dive into OAuth and OpenID Connect 51

• JWA: JSON web algorithms register cryptographic
algorithms

• Bearer Tokens: An auxiliary specification used to
define how to use these tokens and to put a JWT into
an HTTP authorization header for an API to receive

These together with JWT are used by both OAuth (typi-
cally) and OpenID Connect. How exactly is specified in the
core OpenID Connect spec and various ancillary specs, in
the case of OAuth, including the Bearer Token spec.

5.10 OAuth Flow

OAuth defines different “flows” or message exchange
patterns. These interaction types include:

• The code flow (or web server flow)
• Client credential flow
• Resource owner credential flow
• Implicit flow

The code flow is by far the most common; it is probably
what you are most familiar with if you’ve looked into
OAuth much. It’s where the client is (typically) a web
server, and that web site wants to access an API on behalf
of a user. You’ve probably used it as a Resource Owner
many times, for example, when you login to a site using
certain social network identities. Even when the social
network isn’t using OAuth 2 per se, the user experience
is the same. Checkout this YouTube video at time 12:19
to see how this flow goes and what the end user experi-
ences:

http://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer

Deep Dive into OAuth and OpenID Connect 52

We’ll go into the other flows another time. If you have
questions on them in the meantime, ask in a comment
below.

5.11 Improper and Proper Uses of OAuth

After all this, your head may be spinning. Mine was when
I first learned these things. It’s normally. To help you you
orient yourself, I want to stress one really important high-
level point:

• OAuth is not used for authorization. You might
think it is from it’s name, but it’s not.

• OAuth is also not for authentication. If you use it
for this, expect a breach if your data is of any value.

• OAuth is also not for federation.

So what is it for?

It’s for delegation, and delegation only!

This is your plumb line. As you
architect your OAuth deploy-
ment, ask yourself: In this sce-
nario, am I using OAuth for
anything other than delega-
tion? If so, go back to the draw-
ing board.

Consent
vs. Authorization

How can it not be for authorization, you may be won-
dering. The “authorization” of the client by the Resource

Deep Dive into OAuth and OpenID Connect 53

Owner is really consent. This consent may be enough
for the user, but not enough for the API. The API is the
one that’s actually authorizing the request. It probably
takes into account the rights granted to the client by the
Resource Owner, but that consent, in and of its self, is not
authorization.

To see how this nuance makes a very big difference,
imagine you’re a business owner. Suppose you hire an
assistant to help youmanage the finances. You consent to
this assistantwithdrawingmoney from thebusiness’ bank
account. Imagine further that the assistant goes down to
the bank to use these newly delegated rights to extract
some of the company’s capital. The banker would refuse
the transaction because the assistant is not authorized –
certain paperwork hasn’t been filed, for example. So, your
act of delegating your rights to the assistant doesn’t mean
squat. It’s up to the banker to decide if the assistant gets to
pull money out or not. In case it’s not clear, in this analogy,
the business owner is the Resource Owner, the assistant
is the client, and the banker is the API.

5.12 Building OpenID Connect Atop
OAuth

As I mentioned above, OpenID Connect builds on OAuth.
Using everything we just talked about, OpenID Connect
constrains the protocol, turning many of the specifica-
tion’s SHOULDs toMUSTs. This profile also adds new end-
points, flows, kinds of tokens, scopes, and more. OpenID
Connect (which is often abbreviatedOIDC) wasmadewith
mobile in mind. For the new kind of tokens that it defines,
the spec says that they must be JWTs, which were also
designed for low-bandwidth scenarios. By building on

Deep Dive into OAuth and OpenID Connect 54

OAuth, youwill gain both delegated access and federation
capabilities with (typically) one product. This means less
moving parts and reduced complexity.

OpenID Connect is a modern federation specification. It
is a passive profile, meaning it is bound to a passive user
agent that does not take an active part in the message
exchange (though the client does). This exchange flows
over HTTP, and is analogous to the SAML artifact flow (if
that helps). OpenID Connect is a replacement for SAML
and WS-Federation. While it is still relatively new, you
should prefer it over those unless you have good reason
not to (e.g., regulatory constraints).

As I’ve mentioned a few times, OpenID Connect defines a
new kind of token: ID tokens. These are intended for the
client. Unlike access tokens and refresh tokens that are
opaque to the client, ID tokens allow the client to know,
among other things:

• How the user authenticated (i.e., what type of cre-
dential was used)

• When the user authenticated
• Various properties about the authenticateduser (e.g.,
first name, last name, shoe size, etc.)

This is useful when your client needs a bit of info to cus-
tomize the user experience. Many times I’ve seen people
use by value access tokens that contain this info, and
they let the client take the values out of the API’s token.
This means they’re stuck if the API needs to change the
contents of the access token or switch to using by ref for
security reasons. If your client needs data about the user,
give it an ID token and avoid the trouble down the road.

Deep Dive into OAuth and OpenID Connect 55

The User Info Endpoint and OpenID Connect
Scopes

Another important innovation ofOpenIDConnect iswhat’s
called the “User Info Endpoint.” It’s kinda a mouthful, but
it’s an extremely useful addition. The spec defines a few
specific scopes that the client can pass to the OpenID
Connect Provider or OP (which is another name for an AS
that supports OIDC):

• openid (required)
• profile
• email
• address
• phone

You can also (and usually will) define others. The first
is required and switches the OAuth server into OpenID
Connect mode. The others are used to inform the user
about what type of data the OP will release to the client.
If the user authorizes the client to access these scopes,
the OpenID Connect provider will release the respective
data (e.g., email) to the client when the client calls the
user info endpoint. This endpoint is protected by the
access token that the client obtains using the code flow
discussed above.

: An OAuth client that supports OpenID Con-
nect is also called a Relying Party (RP). It gets
this name from the fact that it on the OpenID
Connect Provider to assert the user’s identity.

Deep Dive into OAuth and OpenID Connect 56

Not Backward Compatible with v. 2

It’s important to be aware that OpenID Connect is not
backward compatible withOpenID 2 (or 1 for thatmatter).
OpenID Connect is effectively version 3 of the OpenID
specification. As a major update, it is not interoperable
with previous versions. Updating from v. 2 to Connect will
require a bit of work. If you’ve properly architected your
API infrastructure to separate the concerns of federation
with token issuance and authentication, this change will
probably not disruptmuch. If that’s not the case however,
you may need to update each and every app that used
OpenID 2.

5.13 Conclusion

In this chapter, we dove into the fundamentals of OAuth
and OpenID Connect and pointed out their place in the
Neo-security Stack. In truth, we’ve only skimmed the sur-
face. Anyone providing an API that is protected by OAuth
2 (which should be all of them that need secure data
access), this basic knowledge is a prerequisite for pretty
much everyone on your dev team. Others, including prod-
uct management, operations, and project management
should know some of the basics described above.

If you have questions beyond what we covered here,
checkout this video recording, this Slideshare presenta-
tion.

http://www.twobotechnologies.com/blog/2012/08/cloud-security-standards.html
http://www.twobotechnologies.com/blog/2012/08/cloud-security-standards.html
http://youtu.be/XGmUlyggXVo
http://www.slideshare.net/nordicapis/incorporating-oauth-how-to-integrate-oauth-into-your-mobile-app
http://www.slideshare.net/nordicapis/incorporating-oauth-how-to-integrate-oauth-into-your-mobile-app

Deep Dive into OAuth and OpenID Connect 57

Also by Nordic APIs: The API Lifecycle: A holistic guide to API
development and operations

http://nordicapis.com/ebooks

6. Unique Authorization
Applications of OpenID
Connect

OpenID Connect, an identity layer on top OAuth, is one of
the most important ways that access authorization and
information is passed between two parties online. The
OAuth2 protocol decides how a client receives a token
from a consenting user and then uses that token on an
API call.

Paul Madsen of Ping Identity argues that even though
OAuth2 passes identity by way of that token’s permis-
sions, the protocol lacks in that it does not withold useful
user information. By layering OpenID Connect on top
of OAuth2, the identity semantic comes into play and
OAuth2 becomes identity aware, enabling things like sin-
gle sign-on and personal profile information sharing.

OpenID Connect Key Identity Extensions:

• UserInfo Endpoint: The OAuth protected endpoint
that provides user identity attributes, which limits
registration form drop-off.

• ID Tokens: A structured, secure, signed information
object that carries information about the user in
question, like when they authenticated and how.

If widely adopted, OpenID could transform identity con-
trol by enabling single sign-on, increasing information

58

http://openid.net/connect/
http://nordicapis.com/api-identity/
http://nordicapis.com/api-identity/
https://www.PingIdentity.com/en.html
http://nordicapis.com/api-security-oauth-openid-connect-depth/

Unique Authorization Applications of OpenID Connect 59

security, and helping to manage identity throughout the
Internet of Things. Within this post we’ll dive into these
three use cases on using OpenID to securely manage
user identity.

6.1 How OpenID Connect Enables Native
SSO

OpenID Connect enables native single sign-on, usually
referred to as Native SSO. As native apps continue to
grow in popularity due to their ease of use and ease of
distribution, there comes a greater demand for default
OAuth in native environments. But the burden of man-
aging authentication throughout a sea of various native
apps falls on the end user, who must know which login
is for which app, which needs to be re-authenticated,
among other nuisances.

Forecasts show an increase in native app usage within
the foreseeable future. In 2014, 86 percent of time spent
on smartphones was spent within native apps, not web
browsers. One way to get an edge in this increasingly
crowdedmarket is to increase usability with a single sign-
on for multiple apps published by the same owner. This
can be accomplished using OpenID paired with OAuth.

The process involves the implementation of an Authen-
tication Agent (AZA) which is either an agent installed
on the device’s operating system or is it’s own separate
mobile app. The mobile device user authorizes the AZA
agent to retrieve tokens automatically from other native
mobile apps that it’s authorized to use.

This case has an obvious appeal for businesses to enable
and control SSO access to certain enterprise-grade ap-
plications, for both web and native apps, as well as for

http://www.flurry.com/bid/109749/Apps-Solidify-Leadership-Six-Years-into-the-Mobile-Revolution#.VMvJ3F54pno
http://www.flurry.com/bid/109749/Apps-Solidify-Leadership-Six-Years-into-the-Mobile-Revolution#.VMvJ3F54pno

Unique Authorization Applications of OpenID Connect 60

bundles of B2C apps that were created by the same brand
that wants to give users easy access to them all.

The next step is establishing and standardizing the pro-
tocols under which this Native SSO can be permitted and
tokens can be shared. The OpenID Foundation currently
is collaborating ondeveloping the specifications for native
app SSO via OpenID Connect 1.0.

6.2 How to Use OpenID Connect to
Enable Mobile Information
Management and BYOD

Major security breaches have unfortunately been om-
nipresent in recent news. Various security management
strategies are being employed to avoid these breaches
with a determined focus on offering enterprises the confi-
dence that their employees can use any mobile to access
sensitive business apps while still having a standard of
security, irrespective of mobile device in this bring-your-
own-device (BYOD) world. Strategies include:

• Mobile Device Management (MDM) aims to pro-
tect the whole device, regardless if it’s used for both
business and pleasure. When applied to BYOD, pri-
vacy and property rights are then called into ques-
tion.

• MobileApplicationManagement (MAM) goes gran-
ular, with enterprise IT departments focusing just on
securing business apps, compartmentalizing data
and apps.

• Mobile InformationManagement (MIM) then acts
as the next step in this granularity. The enterprise
imposes its management policy directly on the data

http://openid.net/wg/napps/
http://openid.net/wg/napps/
http://nordicapis.com/api-security-oauth-openid-connect-depth/
http://nordicapis.com/api-security-oauth-openid-connect-depth/

Unique Authorization Applications of OpenID Connect 61

itself. Business data is wrapped with security mech-
anisms andpolicy that constrain anddetermine how
that data can be used.

MIM is keymanagement. UsingMIM, before data is passed
to the device, it is encrypted with a corresponding key
and a policy that encompasses how the data is passed
down as well as how the encryption key is bound to the
data. Decryption keys are then released only under strict
conditions— the right user with the right key using the
right app.

Madsen argues that OpenID Connect is significant to that
key distribution model, via ID token and a user info API,
as it follows an OpenID flow with key distribution steps
layered on top of it. The app itself doesn’t have a decryp-
tion key but it can use its access token to send its license
back up to the key distribution server. That distribution
server can from there determine who the user is, in what
context, and under what licensed circumstance should
a key be released. When approved, it hands back a key
alongwith a license that constrainswhat can be donewith
the authorized data.

There’s no doubt that Mobile Network Operators (MNOs)
are becoming increasingly aware of how OpenID Con-
nect interacts with identity services currently being used
online, including payments and log-ins. The widespread
assumption is that OpenID Connect can mitigate pain
points within existing services by offering a public key
encryption-based authentication framework. This takes
the burden of identity verification from the hands of the
average user and puts it into the hands of expert service
providers.

Of course, applying MIM using OpenID is theoretical, and
has not yet been proven. However, if the one-two punch

http://openid.net/connect/faq/
http://openid.net/connect/faq/

Unique Authorization Applications of OpenID Connect 62

of OpenID and mobile information management (MIM) is
widely adopted, it is assumed that it could increase the
security of the entire Internet dramatically.

6.3 How OpenID Connect Enables the
Internet of Things

Just as identity verification and authentication are priority
topics for MNOs, these themes similarly must extend to
the rapidly expanding world of the Internet of Things
(IoT). As the number of IoT services increase, so will the
number of passwords as mechanisms for sharing and
trusting identities. “The importance of interoperability
amongst identity solutions is that it will enable individuals
to choose between and manage multiple different inter-
operable credentials,” said chief domain architect at BT
Charles Gibbons.

According toMadsen, the Internet of Things (IoT) really as-
sumes the Identity of Things because all these Things will
be operating on our behalf, managing our data. There is
a definite need to distinguish among different connected
Things and their identities, as well as a need for a way to
authenticate how these Things will collect data.

Via OpenID Connect, a Thing can obtain a token to use
in an API call. The user is actively involved in the issuing
of that token, and has the power to impose policies as to
when that token can be used and how his or her data is
shared.

Because OpenID Connect standardizes mechanisms by
which users can control the sharing of the identity that
they use, Madsen believes OpenID Connect will become
a critical asset in the further development of usable,
personalized, and secure IoT applications.

http://nordicapis.com/apis-power-the-internet-of-things/
http://apicrazy.com/category/identity-management/openid-connect/
http://apicrazy.com/category/identity-management/openid-connect/

Unique Authorization Applications of OpenID Connect 63

This topic was presented at a Nordic APIs conference
by Paul Madsen from PingIdentity. View his complete
presentation on YouTube.

https://www.pingidentity.com/en.html
https://www.youtube.com/watch?v=mTZ0bcNphVg

7. How To Control User
Identity Within
Microservices

Properly maintaining identity and access management
throughout a sea of independent services can be tricky.
Unlike a traditional monolithic structure that may have a

64

http://nordicapis.com/api-security-oauth-openid-connect-depth/

How To Control User Identity Within Microservices 65

single security portal,microservices posemanyproblems.
Should each service have it’s own independent security
firewall? How should identity be distributed between mi-
croservices and throughoutmy entire system?What is the
most efficient method for the exchange of user data?

There are smart techniques that leverage common tech-
nologies to not only authorize but perform delegation
across your entire system. In this chapter we identify how
to implement OAuth and OpenID Connect flows using
JSON Web Tokens to achieve the end goal of creating a
distributed authentication mechanism for microser-
vices—a process of managing identity where everything
is self-contained, standardized, secure, and best of all —
easy to replicate.

7.1 What Are Microservices, Again?

Microservice Archi-
tecture

For those readers not well-versed
in the web discussion trends of
late, the microservice design ap-
proach is a way to architect web
service suites into independent spe-
cialized components. These compo-
nents are made to satisfy a very tar-
geted function, and are fully inde-

pendent, deployed as separate environments. The ability
to recompile individual units means that development
and scaling can be vastly easier within a system using
microservices.

This architecture is opposed to the traditionalmonolithic
approach that consolidates all web components into a
single system. The downside of amonolithic design is that
version control cycles are arduous, and scalability is slow.

http://nordicapis.com/microservices-architecture-the-good-the-bad-and-what-you-could-be-doing-better/
http://nordicapis.com/api-security-the-4-defenses-of-the-api-stronghold/
http://en.wikipedia.org/wiki/Microservices
http://en.wikipedia.org/wiki/Microservices
http://martinfowler.com/articles/microservices.html

How To Control User Identity Within Microservices 66

The entire system must be continuously deployed since
it’s packaged together.

Monolithic Design

Themove towardmicroservices could
have dramatic repercussions across
the industry, allowing SaaS organi-
zations to deploy many small ser-
vices no longer dependent on large
system overhauls, easing develop-
ment, and on the user-facing side al-
lowing easy pick-and-choose portals

for users to personalize services to their individual needs.

7.2 Great, So What’s The Problem?

Simplified
monolithic flow

The problemwe’re faced with is that
microservices don’t lend themselves
to the traditional mode of identity
control. In amonolithic system secu-
rity works simply as follows:

1. Figure out who the caller is
2. Pass on credentials to other

components when called
3. Store user information in a

data repository

Since components are conjoined
within this structure, they may share a single security
firewall. They share the state of the user as they receive
it, and may also share access to the same user data
repository.

http://nordicapis.com/api-lifecycle-development/
http://nordicapis.com/api-lifecycle-development/
http://nordicapis.com/building-a-secure-api/
http://nordicapis.com/building-a-secure-api/

How To Control User Identity Within Microservices 67

The problem with
microservice secu-
rity

If the same techniquewere to be ap-
plied to individual microservices, it
would be grossly inefficient. Having
an independent security barrier —
or request handler — for each ser-
vice to authenticate identity is un-
necessary. This would involve calling
an Authentication Service to pop-
ulate the object to handle the re-
quest and respond in every single
instance.

7.3 The Solution: OAuth As A Delegation
Protocol

There is amethod that allows one to combine the benefits
of isolated deployment with the ease of a federated iden-
tity. Jacob Ideskog of Twobo Technologies believes that to
accomplish this OAuth should be interpreted not as Au-
thentication, and not as Authorization, but as Delegation.

In the real world, delegation is where you delegate some-
one to do something for you. In the web realm, the
underlying message is there, yet it also means having
the ability to offer, accept, or deny the exchange of data.
Considering OAuth as a Delegation protocol can assist in
the creation of scalable microservices or APIs.

To understand this process we’ll first lay out a standard
OAuth flow for a simple use case. Assume we need to
access a user’s email account for a simple app that orga-
nizes a user’s email — perhaps to send SMS messages as
notifications. OAuth has the following four main actors:

• Resource Owner (RO): the user

https://www.linkedin.com/in/ideskog
http://www.twobotechnologies.com/
http://oauth.net/

How To Control User Identity Within Microservices 68

• Client: the web or mobile app
• Authorization Service (AS): OAuth 2.0 server
• Resource Server (RS): where the actual service is
stored

7.4 The Simplified OAuth 2 Flow

In our situation, the app (the Client), needs to access
the email account (the Resource Server) to collect emails
before it can organize them to create the notification
system. In a simplified OAuth flow, an approval process
would be as follows:

1. The Client requests access to the Resource Server
by calling the Authentication Server.

2. The Authentication Server redirects to allow the
user to authenticate, which is usually performed
within a browser. This is essentially signing into an
authorization server, not the app.

3. The Authorization Server then validates the user
credentials and provides an Access Token to client,
which can be use to call the Resource Server

4. The Client then sends the Token to the Resource
Server

5. TheResource Server asks theAuthentication Server
if the token is valid.

6. The Authorization Server validates the Token, re-
turning relevant information to theResource Server
i.e. time till token expiration, who the token belongs
too.

7. The Resource Server then provides data to the
Client. In our case, the requested emails are un-
barred and delivered to the client.

How To Control User Identity Within Microservices 69

An important factor to note within this flow is that the
Client — our email notification app — knows nothing
about the user at this stage. The token that was sent
to the client was completely opaque — only a string
of random characters. Though a secure exchange, the
token is itself useless. The exchange thus supplies little
information. What if our app client had a backend with
multiple sessions, for example? Wouldn’t it be nice to
receive additional user information?

7.5 The OpenID Connect Flow

Let’s assume that we’re enhancing the email service client
so that it not only organizes your emails, but also stores
them and translates them into another language. In this
case, the client will want to retrieve additional user data
in order to create and store it’s own user sessions. The
Resource Owner is now split between a mobile app as
well as a backend. The system needs to create session
between client app and the client backend.

To enable this, use an alternative flow with OpenID Con-
nect. In this process, the Authorization Server sends an ID
Token along with the Access Token to the client, allowing
the client to store it’s own user sessions. The flow is as
follows:

1. The Client requests access to the Resource Server
by calling the Authentication Server.

2. The Authentication Server redirects to allow the
user to authenticate.

3. The Authorization Server then validates the user
credentials and provides an Access Token AND an
ID Token to the client.

http://nordicapis.com/3-unique-authorization-applications-of-openid-connect/
http://nordicapis.com/3-unique-authorization-applications-of-openid-connect/

How To Control User Identity Within Microservices 70

4. The Resource Owner then uses this ID to create it’s
own sessions.

5. The Client then sends this to the Resource Server
6. The Resource Server responds, delivering the data

(the emails) to the Client.

The ID token contains information on the user, such as
whether or not they are authenticated, the name, email,
and any number of custom data points on a user. This ID
token takes the form of a JSON Web Token (JWT), which
is a coded and signed compilation of JSON documents.
The document includes a header, body, and a signature
appended to the message. Data + Signature = JWT.

Using a JWT, you can access the public part of certificate,
validate the signature, and understand that this authenti-
cation session was issued — verifying that the user has
authenticated. An important facet of this approach is
that ID tokens establish trust between the Authentication
Server and the Client.

How To Control User Identity Within Microservices 71

7.6 Using JWT For OAuth Access Tokens

Even if we don’t use OpenID Connect, JWTs can be used
for many things. A system can standardize by using JWTs
to pass user data among individual services. Let’s review
the types of OAuth access tokens to see how to smartly
implement secure identity control within microservice
architecture.

By Reference: Standard Access Token

This type of token contains no information outside of the
network, simply pointing to a space where information is
located. This opaque string means nothing to user, and
as it is randomized cannot easily be decrypted. This is the
standard form of an access token — without extraneous
content, simply used for a client to gain access to data.

By Value: JSON Web Token

This typemay contain necessary user information that the
client requires. The data is compiled, and inserted into the
message as an access token. This is an efficient method
because it erases the need to call again for additional in-
formation. If exposedover theweb, a downside is that this
public user information can be read easily read, exposing
the data to an unnecessary risk of decryption attempts to
crack codes.

The Workaround : External vs. Internal

To limit this risk of exposure, Iskedog recommends split-
ting the way the tokens are used. What is usually done is
as follows:

1. The Reference Token is issued by the Authentica-
tion Server. The client sends back when it’s time to

How To Control User Identity Within Microservices 72

call the API.
2. In the middle: The Authentication Server authen-

ticates and responds with a JWT.
3. The JWT is then passed further along in the network.

In themiddle we essentially create a firewall, an Authenti-
cation Server that acts as a token translation point for the
API. This stateless point could be a full fledgedAPI firewall.
It can cache, and should rest on the edge of a network,
porting data into a user repository to create and manage
user sessions.

7.7 Let All Microservices Consume JWT

So, to refresh, with microservice security we have two
problems:

• We need to identify the user multiple times:
We’ve shown how to leave authentication to OAuth
and the OpenID Connect server, so that microser-
vices successfully provide access given someonehas
the right to use the data.

• We have to create and store user sessions: JWTs
contain the necessary information to help in stor-
ing user sessions. If each service can understand a
JSON web token, then you have distributed your au-
thentication mechanism, allowing you to transport
identity throughout your system.

In microservice architecture, an access token should not
be treated as a request object, but rather as an identity
object. As the process outlined above requires transla-
tion, JWTs should be translated by a front-facing stateless

How To Control User Identity Within Microservices 73

proxy, used to take a reference token and convert it
into a value token to then be distributed throughout the
network.

7.8 Why Do This?

By using OAuth with OpenID Connect, and by creating
a standards based architecture that universally accepts
JWTs, the end result is a distributed authentication mech-
anism that is self contained and easily to replicate. Con-
structing a library that understands JWT is a very simple
task. In this environment, access as well as user data is
secured. Constructing microservices that communicate
well and securely transport user information can greatly
increase agility of the whole system, as well as increase
the quality of the end user experience.

8. Data Sharing in the IoT

We consistently put our personal data at risk. API security
concerns sky rocket as the user’s desire to pass access
to others steadily increases. With the rise of Internet
of Things (IoT) devices, the ability to share the use of
physical connected devices makes access management
an increasing concern.

Whether sharing a collaborative document or car loca-
tion, users routinely pass data and access to family mem-
bers, friends, coworkers, clients, or fellow app users —
most often using APIs. But how can these data exchanges
be accomplished in a secure and efficient way using exist-
ing standards?

74

http://www.programmableweb.com/news/survey-finds-api-security-concerns-starting-to-grow/2015/08/07
http://www.programmableweb.com/news/survey-finds-api-security-concerns-starting-to-grow/2015/08/07
http://nordicapis.com/the-state-of-iot-information-design-why-every-iot-device-needs-an-api/
http://nordicapis.com/the-state-of-iot-information-design-why-every-iot-device-needs-an-api/
http://nordicapis.com/fostering-an-internal-culture-of-security/
http://nordicapis.com/top-5-development-tips-for-a-killer-api/

Data Sharing in the IoT 75

In a sessionwith Nordic APIs, Jacob Ideskog demonstrates
how this is possible using OAuth enabled with OpenID
Connect. In this chapter we’ll examine how to implement
secure data sharing for a new bike lock IoT device —
a real world example of introducing a best practice ap-
proach to identity management in the IoT realm.

8.1 A New Economy Based on Shared,
Delegated Ownership

In addition to dramatically altering the way enterprise
business is done, APIs are fueling amajor consumer shift.
With the dawn of smartphone ubiquity, sensors, and IoT
devices, new subscription services and businesses have
quickly emerged around the concept of sharing access to
personal property.

Homeowners are becoming part time business owners
with Airbnb, citizens with a car and free time are making
extra incomedrivingwithUber or Lyft. Apps enable users
to share their office or work space, or use communal
cars with Car2Go or ZipCar. Put simply, the Anything-as-
a-Service (XaaS) model is the wave of the future.

Sharing ownership comes with inherent risks. Risks on
the side of the party using the property, and risks within
the data exchange process. So how does an app avoid
security risks to ensure ownership is delegated correctly?
What specific technologies and workflows offer the best
route to access management?

http://nordicapis.com/speakers/jacob-ideskog/
http://nordicapis.com/api-security-oauth-openid-connect-depth/
http://nordicapis.com/building-a-secure-api/
http://nordicapis.com/building-a-secure-api/
http://nordicapis.com/apis-are-evolving-the-b2b-landscape-2/
http://nordicapis.com/apis-are-evolving-the-b2b-landscape-2/
http://www.demoshelsinki.fi/en/2015/06/30/why-you-wont-own-anything-soon-and-why-thats-a-good-thing/

Data Sharing in the IoT 76

8.2 Connected Bike Lock Example IoT
Device

Take Skylock, a crowdfunded initiative to develop a so-
lar powered connected smart bike lock. It’s loaded with
features — a built in anti-theft feature, accelerometer to
analyzemovement, and automatic safety response alerts.
Skylock also allows keyless entry, and has an ability to
share access remotely with friends using the Skylock
app.

The Skylock lock and app likely utilize many first or third
party APIs to power location, mapping, safety response,
and more. But out of all the software powering the sce-
narios presented in their promo video, the most complex
part of this system is likely the sharing of bike lock access
that occurs between themain character and his girlfriend.

8.3 How This Works

In a scenario like this one, the user typically authorizes
the app to access the API. We’ll call the guy Adam, and his
girlfriend Bianca. Let’s say Adamwants to share access so
that Bianca’s app can access Adam’s account via the API.
In this case, sharing is delegating use.

Can’t OAuth be used for that? Not exactly. OAuth is really
about the User delegating access from the User to the Ap-
plication, i.e. user-to-app delegation. Typically, in OAuth
the app requests access to an API and the user grants that
access. OAuth then gives the app a token.

Rather, this new situation is more complicated. Since
Adam wants to allow Bianca to access his account, dele-
gating user responsibility to Bianca, we are dealing with

http://www.skylock.cc/
https://www.indiegogo.com/projects/skylock-the-worlds-first-solar-powered-connected-bike-lock#/story
http://nordicapis.com/first-or-third-party-apis/
http://nordicapis.com/first-or-third-party-apis/

Data Sharing in the IoT 77

user-user delegation. There are two ways to do this.
Either you set up a database or table around the API
for Bianca to gain access to in order to retrieve data, or,
the system grants Bianca an access token that belongs
to someone else, i.e. Adam, granting Bianca equivalent
powers.

8.4 Option #1: Access Tables

In the first approach, we use the API to retrieve data from
an access table. The flow is as follows:

1. Bianca’s app contacts the OAuth server.
2. The OAuth server challenges Bianca to enter her

credentials (username/password).
3. The OAuth server accepts, and issues her own ac-

count’s access token.
4. Bianca uses this token to send a request to the

API. At this point, she must somehow instruct the
API that she intends to perform on other resources
— she must distinguish between users to access
Adam’s account. (This step is unfortunate as it re-
quires tangling identity management within the API
itself).

5. The API talks to the database to verify that the access
is real, and validates access.

6. The API then responds with Adam’s data to the app.

Looking at it, this is architecturally the simplest flow, but
however, implementation is the hardest. This is especially
difficult when building microservices that plugin to many
APIs. We may be building many small APIs that need to

http://nordicapis.com/writing-microservices-in-go/

Data Sharing in the IoT 78

implement and contact services to repeatedly allow data
access.

These microservices may be doing many separate things.
Their communication protocols may not be similar, and
on top of that, if you have user info tangled into that data,
you’re going to have to program a lot — a lot to leave up
to developers to handle.

8.5 Option #2: Delegated Tokens:
OpenID Connect

OpenID Connect is a companion protocol to OAuth. En-
abling an OAuth server with OpenID Connect adds an
identity layer on top. Now our API not only knows what
access is being given, but it knows who is accessing that
data.

This is processed using the OpenID Connect Userinfo
endpoint, a simple endpoint that canbe called using aGET
verb with an authorization token. The Userinfo endpoint
responds with a JSON document, containing basic user
information such as name, phone, email, etc. With a user
token you can retrieve Userinfo to access user informa-
tion — a pretty simple process.

We can take this response, and change the meaning by
adding access tokens in this response. This is how we list
the delegations. We’ll use the Userinfo endpoint to reis-
sue tokens, or downgrade tokens. In the case of our bike
lock, Bianca receives an access token for the Resources
Owner, Adam, containing meaningful data and scopes to
specify who the authenticator is — in our case, Bianca.

The new flow is like this:

http://openid.net/connect/

Data Sharing in the IoT 79

1. The app requests access from the OpenID Connect
enabled OAuth server.

2. The server challenges Bianca to enter her creden-
tials (username/password).

3. Bianca receives her own access token.
4. Bianca then calls the Userinfo endpoint with her

access token.
5. The OpenID Connect enabled server takes this ac-

cess token.
6. The server responds with a second token (Adam’s

access token). This came from JSON document.
7. BIanca now has 2 tokens. When Bianca needs to

operate on Adams data she uses the token she got
from the UserInfo endpoint. If she needs to do stuff
on her on account, she uses the initial access token
she got.

8. The API will at all times receive one token, and can
look at it to see which user it should operate on.

Sharing Access Between Microservices

As we learned in How to Control User Identity Within
Microservices, handling user data within microservices is
a very similar process. We send in an access token, and
it terminates that token. If we want to access someone
else’s account, we simply use a different token. To regu-
late this process we can place a gateway at this intersec-
tion. It doesn’t reallymatter— regular or delegated access
tokens are acted upon in the same way. Our normal
access case won’t have to be altered — meaning that
modifying the backend is not necessary.

Ideskog admits a possible drawback is that if an appmust
maintain a multitude of tokens. When delegating tons of

http://nordicapis.com/how-to-control-user-identity-within-microservices/
http://nordicapis.com/how-to-control-user-identity-within-microservices/

Data Sharing in the IoT 80

tokens with many people involved in a single flow, you
may run into system bloat.

8.6 Review:

Thanks to smart approaches to delegating access, Adam
can remotely share his bike lock with Bianca in a secure
and confident manner. These methodologies also trans-
fer into identity management within web apps, APIs, or
IoT situations in which users must grant functionality
to other users. As a review, to accomplish this there are
two alternatives:

Access Table Lookup Approach: Identity is built into the
API, and a database is stored access lookup is stored.

• Easy to implement form an ADMIN perspective
• Every API needs to know about delegation
• Every API needs to resolve access rights
• With microservices this becomes a LOT heavier.

Delegated Tokens Approach: Identity is removed form
API, thrown intoOpenIDConnect server andOAuth server.

• Easy to implement on the API side
• APIswork the same for regular access anddelegated
access

• App must maintain multiple tokens

It’s important to remember that OAuth is user-to-app
delegation, not user-to-user delegation. However, if we
throw on OpenId Connect and use the Userinfo endpoint,
we can add user-to-user delegation and be complete
with quality access sharing standards.

Disclosure:

Data Sharing in the IoT 81

• Skylock is just used as an illustrative example, and we
have no affiliation with the company and don’t know if
they used this specific technique in their system.

9. Securing Your Data
Stream with P2P
Encryption

A system is only as secure as its weakest part — the most
expensive chain in the world wrapped around deeply
sunk steel columns is worthless if tied together with zip
ties. The same holds true for security in the API space.
The most secure, authenticated, stable system is only as
secure as its weakest point. By and large, this weakness
lies in the data stream.

In this chapter, we discuss the importance of securing

82

Securing Your Data Stream with P2P Encryption 83

your API data stream, the various technologies necessary
to do so, and the benefits and drawbacks of various
offerings in the point-to-point (P2P) encryption industry.

9.1 Why Encrypt Data?

Systems are tricky things — because a system is by defi-
nition a collection of objects working towards a singular
goal or collection of goals, their efficiency and security
are directly tied to one another. Think of a network or an
API server cluster as a suit of armor — you might have
the best plate steel, the most intricately laid bronze work,
and the most reinforced shield, but without a sturdy and
protective helmet, youmight aswell bewalking into battle
nude.

This is a basic concept in network security, but it bears
repeating (and remembering) - your system is only as
strong as its weakest component.

Enter encryption. Encryption can take an old decrepit
server running out of data software and encrypt the out-
going data stream into a nigh-unbreakable juggernaut.
Compare encrypted traffic breaking to non-encrypted traf-
fic breaking.

Let’s say Bob sends a remote URI call to a server unen-
crypted. This call carries his key to the server, which then
relays the information requested. With a single node in
the middle listening to and capturing traffic (launching
a Man-in-the-Middle Attack, this information can then
be used in a session replay attack, compromising the
integrity and confidentiality of your system.

Let’s say that Bob did the same remote URI call, but in-
stead utilized a 2048-bit SSL certificate encryption system

http://nordicapis.com/api-security-equipping-your-api-with-the-right-armor/
http://nordicapis.com/api-security-equipping-your-api-with-the-right-armor/
http://nordicapis.com/api-security-equipping-your-api-with-the-right-armor/
https://en.wikipedia.org/wiki/Man-in-the-middle_attack

Securing Your Data Stream with P2P Encryption 84

from DigiCert. Even if that node in the middle was able to
completely capture the traffic, DigiCert estimates that it
would take 6.4 quadrillion years to crack the data using
a 2.2Ghz based system with 2GB of RAM — that’s longer
than the total time the universe has existed.

This amount of security is clearly valuable, and it’s easy
and cheap to implement — infrastructure/network solu-
tions such as HTTPS, SSL, and TLS utilize ports and net-
work technologies to secure the data stream as it leaves
and enters the network, and these solutions are typically
already built intomost modern servers and workstations.

Third party solutions are also generally low in cost, with
some solutions falling into the “open software” method-
ology of releasing programs for free to garner community
support and iteration.

Keep in mind that encryption solutions are far different
from methodologies that derive from encryption. For in-
stance, API Keys are one way to secure your datastream,
but in and of themselves, they do not encrypt traffic —
this is in fact one of the greatest weaknesses of keys. Do
not assume any solution that is not expressly encryption
oriented will encrypt traffic.

9.2 Defining Terms

Before we dive too deeply into encryption solutions, we
need to understand a few terms unique to encryption.
These terms can have different meanings used in differ-
ent industries, so it is very important to remember that
these definitions may only apply to this very specific use-
case.

In this piece, we are specifically discussing P2P encryp-
tion. While this often has connotations in the API space

https://www.digicert.com
https://www.digicert.com/TimeTravel/math.htm
https://www.digicert.com/TimeTravel/math.htm
http://www.entrust.com/is-it-ssl-tls-or-https/
https://en.wikipedia.org/wiki/Application_programming_interface_key

Securing Your Data Stream with P2P Encryption 85

of payment processing, in the larger cryptanalysis field,
P2P has a looser definition. P2P simply means the point-
to-point cycle consisting of a provider of data, the data
stream carrying the data, and a consumer of data.

When discussing encryption, the concept of the “data
stream” is also very important to understand. A data
stream is the flow of data from a generating point to a
receiving point — that is, from the API itself to the client
requesting the data. Think of it like the postal service —
the process from when a letter is put into a mailbox to
when it arrives in the mailbox it was addressed to is akin
to a data stream.

Most important, encryption is a method by which data is
codified or obfuscated, preventing unauthorized access,
viewing, or modification. This can be done in a variety
of ways, but all of these possibilities to date fall into
two distinct categories — Block Encryption and Stream
Encryption.

Block Encryption is exactly what it sounds like— the data
stream is put through an encryption method in blocks
or chunks of data, usually in a set size dictated by the
encryptionmethod. For example, in the AES (aka Rijndael)
method of block encryption, these blocks are limited to
128 bits of information,meaning that only 128 bits of data
can be encrypted at a time.

StreamEncryption, on the other hand, encrypts the data
stream in real time — data is not encrypted in blocks,
but rather as a series of binary signals. This method is
resource intensive, and is often easily cracked due to
the fact that encryption methods can be detected by
simply listening to the stream and finding patterns in the
ciphertext output. For this reason, Stream Encryption is
not used much.

https://en.wikipedia.org/wiki/Block_cipher#Rijndael_.2F_AES

Securing Your Data Stream with P2P Encryption 86

9.3 Variants of Key Encryption

There are similarly two types of encryption commonly
employed in the network space.

The first, Public-key, uses algorithms like the RSA Asym-
metric Block Cipher or ElGamal to encode communica-
tions. This method uses a key pair, from which both
keys are derived, with one key functioning to encrypt the
data, and the other to decrypt. The decrypting key is kept
secret, and is typically tied to the recipient, whereas the
encryption key is public, allowing anyone to encrypt data
for that particular recipient.

This is the most secure version of encryption due to the
fact that the codes are separate, but defined against one
another. The private key is generated from a public key,
and that public key is in itself a secure key. By setting up
the system this way, an unauthorized user or node could
intercept the full decrypted public key and still have no
access to the user system; likewise, they could intercept
the full decrypted private key, and again have no access
to the server.

Another formof encryption is the Symmetric-keymethod-
ology, which utilizes the same two keys to both encrypt
and decrypt. This method is secure for local use (such
as encrypting password databases on a root server), but
should not be used over a network in its plain form
without encrypting the session key or data stream using
a secondary assymetric encrypted protocol.

The Symmetric-key method is considered to be a less-
secure solution than the Public-key method due to the
fact that both the encryption and decryption key are the
same key — because of this, a theoretical unauthorized
user could obtain either the server key or the client key,

https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
https://en.wikipedia.org/wiki/ElGamal_encryption
https://en.wikipedia.org/wiki/Encryption_software

Securing Your Data Stream with P2P Encryption 87

and access any resource he or she wanted to. Public keys
should not be inherently trusted either — a user must
knowwhoowns the private part of the key to ensure secu-
rity. Nonetheless, Asymmetric-key encryption is typically
a stronger solution despite this.

9.4 Built-in Encryption Solutions

The most common and easily implemented solution is
HTTPS. HTTPS, standing for Hyper Text Transfer Protocol
Secure, is a protocol by which HTTP, the language of
the internet, is encrypted using a variety of algorithms,
including RSA, ECDH (Elliptic curve Diffie–Hellman), and
Kerberos.

This encrypted data is then sent over a secure protocol to
the end user for decryption. This transportation happens
over two main protocols — SSL and TLS.

SSL, or Secure Sockets Layer, utilizes a Public-key or Asym-
metric algorithm to transmit Symmetric encrypted data
— this two-part process provides incredible security and
agility in encryption. This protocol uses an SSL Certificate
that is issued in response to a Certificate Signing Request
(CST), which is then validated. SSL is a complex system,
but this complexity is largely hidden from consumers.
This hidden complexity makes the user-experience that
much better, improving the impression of your service.

Likewise, HTTPS can also utilize the TLS protocol. TLS, or
Transport Layer Security, is the updated version of SSL,
and is considered the modern protocol to use over SSL
whenever possible. TLS functions nearly identical to SSL,
with very few exceptions — notably the key derivation
system and key exchange process.

https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Kerberos_%28protocol%29
http://info.ssl.com/article.aspx?id=10241
https://technet.microsoft.com/en-us/library/Cc781476%28v=WS.10%29.aspx
https://technet.microsoft.com/en-us/library/Cc781476%28v=WS.10%29.aspx
http://nordicapis.com/7-api-design-lessons-world-tour-roundup/
http://nordicapis.com/7-api-design-lessons-world-tour-roundup/
https://tools.ietf.org/html/rfc5246

Securing Your Data Stream with P2P Encryption 88

It doesn’tmatter whichmethod you choose (thoughmany
administrators would suggest you utilize the version just
before the most up-to-date protocol version to ensure
functionality) — just remain consistent! Consistency is a
key part of success in API development, so whatever you
choose, stick with it.

9.5 External Encryption Solutions

While HTTPS is a very flexible system, there are certain
use-cases that may require third party point-to-point en-
cryption methods designed for very specific purposes.
Luckily, the API space is populatedwith encryptionproviders
utilizing a variety of technologies and systems to ensure
a secure ecosystem.

Take for example the CyberSource payment encryption
service. This service utilizes card-reader software tied
into hardware security modules to send data remotely
over secure channels, increasing security and data loss
prevention success rates.

For a more general solution, a system like OAuth 1.0a
pairs authorization with data encryption. Utilizing a sig-
nature, typically HMAC-SHA1, OAuth 1.0a sends this data
over plain communication lines (though TLS/SSL can be
used). Because OAuth 1.0a does not send the password
in transit directly, this all but removes the threat of sniffed
traffic and captured sessions.

9.6 Use-Case Scenarios

Given that encryption of point-to-point data transmission
is so vitally import for APIs transferring secure data, such

http://nordicapis.com/top-5-development-tips-for-a-killer-api/
http://nordicapis.com/top-5-development-tips-for-a-killer-api/
http://www.cybersource.com/products/payment_security/p2pe/
http://www.cybersource.com/products/payment_security/p2pe/
https://en.wikipedia.org/wiki/OAuth
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code#Definition_.28from_RFC_2104.29

Securing Your Data Stream with P2P Encryption 89

as passwords, health records, payment processing, etc.,
view encryption as an absolute requirement in any sit-
uation where there is a fiscal value assigned to data. If
your data could be sold, it should be protected. If there’s
money involved, you can be sure there are people some-
where who want to take that stream and use it for their
own purposes.

In some other cases, encryption might be required. Fed-
eral contracts, government-to-civilian client implementa-
tion, and healthcare APIs may be required to encrypt
traffic as part of contractual negotiations or laws such as
HIPAA (the Health Insurance Portability and Accountabil-
ity Act of 1996).

That’s not to say, however, that encryption is only useful
for secure situations. As users increasingly value their
privacy, implementing encryption standards can be as
much a security feature as a selling point to potential
customers.

9.7 Example Code Executions

By and large, these methods are incredibly simple for the
user and the API provider to implement. For instance, in
curl, you can simply use the following path command:

… curl -3 -capath –ssl https://api.website.com …

And with that small piece of code, you’re now utilizing a
local certificate to sign and encrypt your data connection.

For consumers, using your web app or API in a secure
mode is as simple as connecting over HTTPS. For exam-
ple, when connecting to the Facebook web application,
a variety of APIs are used to connect user accounts to
data. Simply logging in under https://www.facebook.com

Securing Your Data Stream with P2P Encryption 90

rather than the conventional http://www.facebook.com
will trigger a secure HTTPS connection utilizing the en-
cryption chosen by the provider.

9.8 Conclusion

Security is an important thing to consider — it should be
one of the first things you consider in the API lifecycle.
Regardless of whether your API is public or private, first
or third party, a well-deployed security solution will make
your API more useful, secure, and attractive.

http://nordicapis.com/ebook-released-the-api-lifecycle/
http://nordicapis.com/first-or-third-party-apis/
http://nordicapis.com/first-or-third-party-apis/
http://nordicapis.com/functional-vs-useful-what-makes-a-useful-api/

10. Day Zero Flash Exploits
and Versioning
Techniques

Thismonth, a day-zero Flash exploit was disclosed, expos-
ing potentially millions of users’ data. After an emergency
patch was rushed out, two more exploits were quickly
discovered, leading to a vocal demand for an end-of-life
date for Flash.

This isn’t just a problem that affects media outlets and
entertainment sites — vulnerabilities from services such
as Flash and other dependencies commonly used in the

91

http://arstechnica.com/security/2015/07/firefox-blacklists-flash-player-due-to-unpatched-0-day-vulnerabilities/
http://arstechnica.com/security/2015/07/two-new-flash-exploits-surface-from-hacking-team-combine-with-java-0-day/
http://arstechnica.com/security/2015/07/two-new-flash-exploits-surface-from-hacking-team-combine-with-java-0-day/
http://techcrunch.com/2015/07/14/experts-find-a-third-hacking-team-flash-exploit-call-for-an-end-to-the-madness/#.qa3ulz:T57c
http://techcrunch.com/2015/07/14/experts-find-a-third-hacking-team-flash-exploit-call-for-an-end-to-the-madness/#.qa3ulz:T57c

Day Zero Flash Exploits and Versioning Techniques 92

production, use, and implementation of APIs are often
subject to the same day-zero exploits and disclosures as
the beleaguered Adobe Flash platform.

Here we discuss the nature of security in the modern
dependency-centric designmethodology, the importance
of versioning, and some basic steps developers can take
to secure their product throughout the API Lifecycle.

10.1 Short History of
Dependency-Centric Design
Architecture

Unauthorized access to resources on a network is as old
as networking itself — in 1976 and 1978, for example,
John Draper (aka Captain Crunch) was indicted for using
a cereal-box toy whistle to generate tones for free calling
around the world. Vulnerabilities in phone systems, cable
television systems, and early internet-based subscription
systems have long been the focus of skilled, intelligent,
and persistent hackers.

In the old days, hacking into systemswas adifficult prospect
— once systems began to move away from tone gener-
ation (as in the phone system) and basic unencrypted
passwords and usernames, gaining access to these sys-
tems became more difficult. Larger connected systems
soon began to implement proprietary security solutions,
managing Authentication and Authorization using inter-
nal services behind a secure connection to the outside
world.

As the concept of user-oriented services such as pay-
ment processing, online shopping, and internet media
providers began to take hold, however, a certain amount

http://www.pctools.com/security-news/zero-day-vulnerability/
http://nordicapis.com/envisioning-the-entire-api-lifecycle/
https://en.wikipedia.org/wiki/John_Draper#Legends
https://en.wikipedia.org/wiki/John_Draper#Legends
http://nordicapis.com/api-security-the-4-defenses-of-the-api-stronghold/

Day Zero Flash Exploits and Versioning Techniques 93

of standardization was required. With the burgeoning
World Wide Web taking the world by storm on the stan-
dardized TCP/IP protocol stack, developers soon began to
create systems that they could tie into their own code for
further functionality.

The code created with these programs depended on the
standardized programs to function— hence the term de-
pendencies. Shockwave, Flash, and other such systems
enabled developers to stop “re-inventing the wheel” each
time they created a new product, and assured compati-
bility between disparate systems.

This shift in architecture design has created many of
the problems API developers face today — the change
from internal design to dependency-centric design has
created a situation where dependency vulnerabilities are
causing increased security concerns.

10.2 The Hotfix — Versioning

Seeing the issue with dependencies and the constant
need to update and revise, developers soon implemented
a solution known as versioning. With versioning, an API
or service developer can elect to use the most up-to-
date version, beta versions, and even old versions of a
dependency for their code.

While this was largely meant for compatibility, allowing
services to utilize older dependencies on machines with-
out access or permissions to utilize newer dependencies,
this also created a security situation where developers of
the dependencies could ensure security by pushing out
patches to fix vulnerabilities identified through testing
and real-world use cases. While this made development

https://en.wikibooks.org/wiki/A-level_Computing/AQA/Computer_Components,_The_Stored_Program_Concept_and_the_Internet/Structure_of_the_Internet/TCP_IP_protocol_stack

Day Zero Flash Exploits and Versioning Techniques 94

simpler for the developers, it came with its own set of
caveats.

Within the context of modern API development, version-
ing has two basic approaches, each with strengths and
weaknesses.

The First Approach — Update and then Review

The first and most common approach is to Update and
Review as dependency versions are released. By taking
this approach, an API developer will immediately install
updated dependencies or systems, and then review the
update through changelogs and real-life use. This type
of versioning often ignores beta or test releases, and
focuses on stable releases.

While this seems like a good approach, there are some
huge weaknesses. By not first looking at the code of the
newest patch for the dependency, an API developer is
placing blind faith in the dependency developer. This
shifts responsibility from personal to external, creating a
situation where the security of your ecosystem is placed
squarely on the shoulders of someone without a vested
interest in keeping your system safe.

Furthermore, this approach could have an inverse im-
pact — by installing an untested or unreviewed version,
an API developer could potentially open themselves up to
more exploits than the previous unpatched dependency.
For many, this is simply a caveat too big to ignore — it’s
easier to fight a battle with an enemy you know than to
wage a war with untold enemies you don’t.

http://nordicapis.com/7-api-design-lessons-world-tour-roundup/
https://en.wikipedia.org/wiki/Changelog

Day Zero Flash Exploits and Versioning Techniques 95

The Second Approach— Review and then Update

The second and less common approach is to Review and
Update. Unlike the first approach, this necessitates the
developer first reviews the code of the dependency up-
date, comparing it to previously known code. The devel-
oper installs only when entirely convinced of the update’s
veracity and completeness.

This might seem counter-intuitive — “increase your secu-
rity by not installing new updates”. The truth is that you
dramatically increase your security by using this approach
simply due to the fact that you will know what you are
fighting.

Let’s say you use a dependency such as Flash for the web
portal for your API. You know a set of exploits exist that
can force a buffer overflow. Knowing this, what is the
best solution— update this dependency to a new version
with unproven, unreviewed code, or handle the buffer
overflow with a prevention system and self-patch while
you review the new update?

Simply put, an API developer should review each and
every piece of code before implementation — or at
the very least, compare it to the already existent code to
ensure compatibility, security, and safety amongst a wide
variety of their use cases.

10.3 Dependency Implementation Steps:
EIT

So what then is the proper process an API developer
should take to ensure that something like the recent
day-zero Flash exploits don’t occur? This process can be
summed up in three simple letters: EIT.

http://nordicapis.com/success-vs-failure-the-importance-of-api-metrics/
http://nordicapis.com/success-vs-failure-the-importance-of-api-metrics/

Day Zero Flash Exploits and Versioning Techniques 96

• E— Examine. Examine the code of the dependency
patch you are intending to install. Check it against
previous patches — has the code changed dramati-
cally? If so, do you understand how it has changed?
Use changelogs and bug trackers to examine issues
with new patches. Use these resources to dig deep
into how the dependency functions and why the
patch had to be created.

• I — Implement. Once you have thoroughly exam-
ined the code of the dependency update, the de-
pendency should be implemented. Ensure that com-
patibility between security systems and the updated
dependency is maintained.

• T — Test. Test your API. Use penetration testing
tools, try and trigger buffer overflows, and send
un-validated calls and requests to see how your
API responds. If you trigger any failures in the new
patch, add your result and methods to duplicate to
the bug tracker for your dependency after repairing
your ecosystem to ensure it doesn’t continue to be
an issue.

By following this set of guidelines, an API developer can
ensure that their API dependencies and complete ecosys-
tem functions as intended, ensuring long-term security
and functionality throughout patching.

10.4 Lessons Learned

Dependencies are a wonderful thing — to be able to
quickly create, implement, andpatch, API developersmust
use a certain amount of dependencies. When these de-
pendencies inevitably are exposed, a trend towards blam-
ing the dependency developer quickly blooms.

http://nordicapis.com/3-ways-to-build-microservices/
http://nordicapis.com/3-ways-to-build-microservices/

Day Zero Flash Exploits and Versioning Techniques 97

This is a poor response — the fact of the matter is that
the vulnerability in the API is not the fault of the depen-
dency developer, but the fault of the API developer who
adopted that dependency. Security is solely the domain
of the developer — shifting responsibility to the user or
to another developer is simply bad practice, and will lead
to a less secure ecosystem.

10.5 Conclusion

Though the recent exploits are focused on Flash, this is
not just an issue exclusive to platforms, either — vul-
nerabilities in methodologies and workarounds in code
such as Scala, Go, and other such languages can lead
to buffer overflows, memory leaks, and poor encryption.
Issues within the cloud computing stack can expose huge
security flaws. Even lack of effective encryption could
result in the complete exposure of network resources
which may betray your security ecosystem.

The takeaway? Check your dependencies, and check
your code — security for your API is solely your re-
sponsibility.

http://nordicapis.com/writing-microservices-in-go/
http://nordicapis.com/writing-microservices-in-go/
http://nordicapis.com/living-in-the-cloud-stack-understanding-saas-paas-and-iaas-apis/

11. Fostering an Internal
Culture of Security

Fostering an internal culture of security is paramount
to an organization’s success. This means adopting API
security and developer responsibility as cultural norms
within your organization. In this chapter, we talk about
why this culture is so important, and what steps to take to
improve your internal approach to promote sustainability
and growth.

98

http://nordicapis.com/achieve-accelerated-growth-apis/

Fostering an Internal Culture of Security 99

11.1 Holistic Security — Whose
Responsibility?

There is amindset amongstmany novice developers (and,
unfortunately, many seasoned veteran developers) that
security is the responsibility of the user. After all, it is the
user that holds the keys to the kingdom in the form of
a username and password, along with authentication/au-
thorization profiles and usage needs.

This is fundamentally flawed,
however, if only for one rea-
son — the user does not have
complete access to the system
they are requesting access to.
By its very nature, an API is re-
strictive to those remotely ac-
cessing it when compared to

those with physical access to its server. Thus, both the
the API user and the API developer have a large secu-
rity responsibility.

Think of it this way — a person invites a friend to house
sit for a week and gives them a key. At that moment, the
key is the friend’s responsibility. In an API environment,
the username, password, or token are similarly the user’s
responsibility.

But whose responsibility is the front door? Who decided
the type of material the door was made of? Who needed
to change the lock when it stopped working properly?
Who had the keys made? The homeowner did. In the
API space, providers must similarly take responsibility to
ensure security within their system.

A user can only be responsible for that which they have

http://devblog.blackberry.com/2012/12/application-security-part-1/
http://devblog.blackberry.com/2012/12/application-security-part-1/

Fostering an Internal Culture of Security 100

— themethods by which they authenticate and authorize
themselves. Federation, delegation, physical security, and
internal data security is within the purview of the API
developer for the simple fact that they are the ones most
able to ensure these systems are secure.

11.2 The Importance of CIA:
Confidentiality, Integrity,
Availability

An ideal system balances Confidentiality, Integrity, and
Availability in harmony with security solutions and access
requirements. With somany APIs functioning on a variety
of platforms, and with many modern systems utilizing
cloud computing and storage, internal security balanced
with external security is of incredible importance.

Confidentiality

Confidentiality is the act of keeping information away
from those who should not be accessing it. In the API
space, a division needs to be made between external
and internal confidentiality. External confidentiality is,
obviously, the restriction of external access to confiden-
tial materials. This includes access to API functionality
not needed for the user’s specific requirements, and re-
stricted access to password databases.

While confidentiality is often handled utilizing encryption
to obscure information, there is a great deal of informa-
tion that cannot be encrypted — the information held by
the developers of the API. This internal confidentiality is
often far more dangerous than any external confidential-
ity issue could ever be.

http://nordicapis.com/api-security-the-4-defenses-of-the-api-stronghold/
http://nordicapis.com/living-in-the-cloud-stack-understanding-saas-paas-and-iaas-apis/
http://nordicapis.com/living-in-the-cloud-stack-understanding-saas-paas-and-iaas-apis/
http://computer.howstuffworks.com/encryption.htm
http://computer.howstuffworks.com/encryption.htm

Fostering an Internal Culture of Security 101

An Internal security cul-
ture restricts data to only
those who have the rights
to see it

As an example, assume a de-
veloper is using a flat database
system for passwords that is
protected by an internal au-
thentication service. This ser-
vice, hosted on a Linux server,
requires a usernameandpass-
word on the root level to ac-
cess the authentication tables.

A hacker is attempting to ac-
cess a confidential server, and
has a direct connection to your
systems and servers through
anAPI. He calls the developer’s
office, and states that he is
the hardware provider for the
server calling to issue a patch
for a massive vulnerability, and that he needs a private,
unrestricted session with the server.

The developer creates a root username/password com-
bination, which the hacker is able to use to enter the
service unrestricted, and steal the authentication tables
for nefarious purposes.

This is called phishing, and it’s a huge risk that many
people have fallen afoul of. Promoting an internal culture
of security in this realm means ensuring that data is kept
secure, that developers follow policies ensuring security
of authentication and authorization protocols, and that
things like phishing are avoided.

In addition to ensuring that a culture of security exists,
make developers aware of these threats. Have a properly
utilized and understood system of Authentication, Au-
thorization, Federation, and Delegation to ensure unau-

http://nordicapis.com/api-security-the-4-defenses-of-the-api-stronghold/
http://nordicapis.com/api-security-the-4-defenses-of-the-api-stronghold/

Fostering an Internal Culture of Security 102

thorized external access granted by internal developers
becomes a non-threat.

Integrity

An internal security cul-
ture guarantees data is
only changed by those au-
thorized to do so

Integrity in theAPI spacemeans
ensuring data accuracy and
trustworthiness. Bymaintain-
ing data streams and employ-
ing secureworkstations, unau-
thorized changes to data in
transit should not occur, and
the alteration of hard-coded
information becomes a non-
threat.

Unlike confidentiality, threats
in this category are often in-
ternal. In the corporate world,
disgruntled employees, faulty
servers, and even poor ver-
sioning can lead to the change
of data during the transit cycle. Poorly coded software can
return values that should not be returned, vulnerabilities
that should be secured by software can be breached,
and physical transmission of code can result in captured
sessions and man-in-the-middle attacks.

One of the best ways to manage the integrity of a system
is to educate developers on exactly what their API traffic
should look like. This can be done with a range of API
Metric solutions which can show the rate of traffic, the
type of data requested, the average connection length,
and more.

Knowwhich services aremost often attacked and through
what method, and take steps to secure these resources

http://www.zdnet.com/article/the-top-five-internal-security-threats/
http://www.zdnet.com/article/the-top-five-internal-security-threats/
http://www.zdnet.com/article/the-top-five-internal-security-threats/
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://nordicapis.com/success-vs-failure-the-importance-of-api-metrics/
http://nordicapis.com/success-vs-failure-the-importance-of-api-metrics/

Fostering an Internal Culture of Security 103

(through bastion workstations, DMZ zones, etc.). Preemp-
tively stop these problems by educating developers on
secure data transmission, protocol requirements, and
what is a “normal” and “abnormal” data stream.

Adopt a culture that places prime importance on risk
management — especially when it comes to integrity
— one of the harder things to maintain. Balance risk
management with effectiveness of the service, however,
ensuring that integrity exists alongside ease of use and
access for clients and users.

Linda Stutsman put it best in an interview with Andrew
Briney of Information Security Magazine:

”It’s said time and time again, but it’s absolutely
true: You have to get to the point where risk
management becomes part of the way you
work. That starts with good policies driven by
the business — not by security. Communica-
tion is absolutely the top factor, through poli-
cies and training programs. Then it’s determin-
ing the few significant metrics that you need to
measure.”

As an aside, the integrity of an API is notwholly dependent
on the software or code transmission factors — a lot can
be said for the physical network the API is planning on
running through, and the limitations inherent therein.

For instance, if an API developer is creating an API for
local area record transmission, such as a hospital setting,
knowing whether the signal will be transmitted through
coaxial or fibre-optic cable, whether these cables will be
running near power transmission causing data loss, and
evenwhether the datawill be exiting to thewider Internet,

http://searchsecurity.techtarget.com/feature/Fostering-an-information-security-culture-CISOs-share-their-best-practices
http://searchsecurity.techtarget.com/feature/Fostering-an-information-security-culture-CISOs-share-their-best-practices

Fostering an Internal Culture of Security 104

will inform the developer as to error-checking, packet-loss
mitigation, and integrity-increasing features thatmight be
required and maintained.

Availability

An internal security cul-
ture focuses on high up-
time and ease of access

While it’s important to ensure
that your API has great data
confidentiality and integrity,
perhaps the most important
attribute of an effective cul-
ture of security is ensuring
availability. After all, if an API
cannot be used by its users,
then is it really an API?

Whether an API is Private, Pub-
lic or Partner-centric, ensuring
your API is accessible is incred-
ibly important. This can be bal-
anced in a handful of ways,
but all of these techniques can

be broadly summed up in two categories — ensuring
availability through developer activity and through user
activity.

Let’s look at developer activity. First and foremost, de-
velopers should understand that every single thing they
do to an API or the server an API runs on will affect
the availability of the system. Updating server firmware,
changing the way an API call functions, or even acciden-
tally bumping into a power strip can result in the failure
of availability for many users.

Additionally, some changes that are considered simple
are actually catastrophic for the end-user. Consider ver-
sioning — while updating to the newest version of a

http://nordicapis.com/api-security-equipping-your-api-with-the-right-armor/
http://nordicapis.com/api-security-equipping-your-api-with-the-right-armor/

Fostering an Internal Culture of Security 105

dependency might deliver the most up-to-date content
for your user, if this update does not support legacy sys-
tems or services, an API might be fundamentally broken.
Changes should be balanced through the lifecycle of the
API, regardless of whether the API in question is a First or
Third Party API.

User activity is far easier to handle. Threats to availability
from users often spring from poorly formed requests in
the case of non-malicious threats, and in port-scanning
or traffic flooding (especially UDP flooding) in malicious
threats. These user threats are easier to handle, and can
often be taken care of simply by choosing the correct
architecture type and implementing solutions such as
buffer overflow mitigation, memory registers, and error
reporting.

11.3 4 Aspects of a Security Culture

So far we’ve covered high-level concepts — let’s break
down what an effective culture of security is in four bullet
points. These points, when implemented fully, should not
only create an effective culture of security, but lead to
growth and stability over time.

A culture of security entails:

• Awareness of Threats - developers should be aware
of potential threats to their system, and code their
APIs accordingly;

• Awareness of Vulnerabilities - developers should
recognize vulnerabilities inherent in their system,
servers, or devices. This includes vulnerabilities aris-
ing from their own code and systems as well as
those from third party vendors, services, or servers;

http://nordicapis.com/day-0-flash-exploits-versioning-and-the-api-space/
http://nordicapis.com/first-or-third-party-apis/
http://nordicapis.com/first-or-third-party-apis/
http://www.webopedia.com/TERM/P/port_scanning.html
http://nordicapis.com/a-tale-of-four-api-designs-dissecting-common-api-architectures/
http://nordicapis.com/a-tale-of-four-api-designs-dissecting-common-api-architectures/
http://nordicapis.com/2-changes-that-will-transform-your-business-into-an-api-platform-for-growth/

Fostering an Internal Culture of Security 106

• Awareness of Faults - developers should be con-
scious of their own personal faults. If a developer
has a history of misplacing thumbdrives, sharing
passwords, or worse, they should not be responsi-
ble for internally managed secure services;

• Awareness of Limitations - developers should know
the network that is being utilized for their API, and
what limitations it represents. Security solutions for
a close intranet running on fibre-optic cable will
be different than solutions for an Internet-facing
connection running on coaxial or twisted-pair;

11.4 Considering “Culture”

It’s important to consider the function of culture within an
organization. All of the topics discussed in this piece are
applicable in a huge range of situations, environments,
and organizations, due to the nature of security. Security
concepts are universal, and scale directly with the size of
the data being protected.

The way a culture of security is built and perpetuated
is directly influenced by the type of organization which
adopts it. For instance, in a governmental organization,
this culture can be directly enforced through policy, law,
and guidelines, whereas in a non-profit, this information
must be disseminated through classes or instructional
guidelines to workers who may be unfamiliar with such
stringent policies.

In a corporate environment, much of this security can
be managed directly through limiting privileges and abil-
ities.In a corporate environment, each server or service
might have its own administrator, and by limiting powers,

Fostering an Internal Culture of Security 107

knowledge, and abilities to only those that need it to
function, you maintain a culture of security.

In a small startup or non-profit, however, one personmay
need access to ten different services and servers. In this
environment, where the success of the company directly
controls the well-being of its employees in a very granular
way, reaching out verbally or via email can be extremely
effective, as there is a personal stake in security.

11.5 All Organizations Should
Perpetuate an Internal Culture of
Security

Fundamentally, fostering an internal culture of security
is easiest to do in the earliest stages — beginning with
a strong security-focused mindset ensures that you can
revise, expand, and reiterate while staying safe against
current attacks. Additionally, preparing your systems for
known attacks and being aware of any vulnerabilities
ensures that any system can stay secure long into the
future against new, unforseen attacks.

By acting on these points, you make your API a more
effective service for the user. An insecure servicemight be
functional, but a secure service is fundamentally useful.

http://nordicapis.com/2-changes-that-will-transform-your-business-into-an-api-platform-for-growth/
http://nordicapis.com/top-5-development-tips-for-a-killer-api/
http://nordicapis.com/top-5-development-tips-for-a-killer-api/
http://nordicapis.com/functional-vs-useful-what-makes-a-useful-api/

Resources

API Themed Events

To learn about upcoming Nordic APIs meetups, confer-
ences, and seminars, subscribe to our newsletter or check
our event calendar. Here is a list of Nordic APIs sessions
referenced in this e-book, by order of appearance. Also
follow our YouTube channel for more videos.

API Security Talks:

• The Nuts and Bolts of API Security: Protecting Your
Data at All Times, Travis Spencer, Twobo Technolo-
gies

• Integrating API Security Into A Comprehensive Iden-
tity Platform, Pamela Dingle, Ping Identity

• Pass On Access: User to User Data Sharing With
OAuth2, Jacob Ideskog, Twobo Technologies

• Building a secure API: Overview of techniques and
technologies needed to launch a secure API, Travis
Spencer, Twobo Technologies

• OpenID Connect and its role in Native SSO Paul
Madsen, Ping Identity

• OAuth andOpenID Connect for Microservices, Jacob
Ideskog, Twobo Technologies

108

http://nordicapis.com/newsletter/
http://nordicapis.com/event-calendar/
https://www.youtube.com/user/nordicapis
https://www.youtube.com/watch?v=tj03NRM6SP8
https://www.youtube.com/watch?v=tj03NRM6SP8
https://www.youtube.com/watch?v=dl0jD29XkK4
https://www.youtube.com/watch?v=dl0jD29XkK4
https://www.youtube.com/watch?v=CU5ptUHQeBo
https://www.youtube.com/watch?v=CU5ptUHQeBo
https://www.youtube.com/watch?v=E6o3IKcQABY
https://www.youtube.com/watch?v=E6o3IKcQABY
https://www.youtube.com/watch?v=mTZ0bcNphVg
https://www.youtube.com/watch?v=BdKmZ7mPNns

Resources 109

Follow the Nordic APIs Blog

Much of our eBook content originates from the Nordic
APIs blog, where we publish in-depth API-centric thought
pieces and walkthroughs twice a week. Sign up to our
newsletter to receive blog post updates via our Weekly
Digest, or visit our blog for the latest posts!

More eBooks by Nordic APIs:

Visit our eBook page to download any of the following
eBooks for free:

• The API Lifecycle: A holistic approach to maintain-
ing your API throughout it’s entire lifecycle, from
conception to deprecation.

• Developing The API Mindset : Details the distinc-
tion between Public, Private, and Partner API busi-
ness strategies with use cases from Nordic APIs
events.

• Nordic APIs Winter Collection: Our best 11 posts
published in the 2014 - 2015 winter season.

• Nordic APIs Summer Collection 2014: A handful of
Nordic APIs blog posts offering best practice tips.

http://nordicapis.com/newsletter/
http://nordicapis.com/blog
http://nordicapis.com/ebooks/

Endnotes
Nordic APIs is an independent blog and this publica-
tion has not been authorized, sponsored, or otherwise
approved by any company mentioned in it. All trade-
marks, servicemarks, registered trademarks, and regis-
tered servicemarks are the property of their respective
owners.

• Select icons made by Freepik and are licensed by CC
BY 3.0

• Select images are copyright Twobo Technologies
and used by permission.

• The Mobile/Enterprise/API Security Venn diagram
was created by [Gunnar Peterson][gunnar] and also
used by permission.]*

Nordic APIs AB Box 133 447 24 Vargarda, Sweden

Facebook | Twitter | Linkedin | Google+ | YouTube

Blog | Home | Newsletter | Contact

110

http://www.freepik.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.twobotechnologies.com/
http://facebook.com/nordicapis
http://twitter.com/nordicapis
https://www.linkedin.com/company/nordic-apis
https://plus.google.com/u/0/+Nordicapis/posts
https://www.youtube.com/user/nordicapis
http://nordicapis.com/blog/
http://nordicapis.com
http://nordicapis.com/newsletter/
mailto:info@nordicapis.com

	Table of Contents
	Preface
	Introducing API Security Concepts
	Identity is at the Forefront of API Security
	Neo-Security Stack
	OAuth Basics
	OpenID Connect
	JSON Identity Suite
	Neo-Security Stack Protocols Increase API Security
	The Myth of API Keys
	Access Management
	IoT Security
	Using Proven Standards

	The 4 Defenses of The API Stronghold
	Balancing Access and Permissions
	Authentication: Identity
	Authorization: Access
	Federation: Reusing Credentials & Spreading Resources
	Delegation: The Signet of (Limited) Power
	Holistic Security vs. Singular Approach
	Application For APIs

	Equipping Your API With the Right Armor: 3 Approaches to Provisioning
	Differences In API Approaches: Private, Public, & Partner APIs
	Considerations and Caveats
	So Where Is The Middle Ground?
	Real-World Failure
	Two Real-World Successes
	Conclusion

	Your API is Vulnerable: 4 Top Security Risks to Mitigate
	Gauging Vulnerabilities
	Black Hat vs. White Hat Hackers
	Risk 1 - Security Relies on the Developer
	Risk 2 - “Just Enough” Coding
	Risk 3 - Misunderstanding Your Ecosystem
	Risk 4 - Trusting the API Consumer With Too Much Control
	Conclusion

	Deep Dive into OAuth and OpenID Connect
	OAuth and OpenID Connect in Context
	Start with a Secure Foundation
	Overview of OAuth
	Actors in OAuth
	Scopes
	Kinds of Tokens
	Passing Tokens
	Profiles of Tokens
	Types of Tokens
	OAuth Flow
	Improper and Proper Uses of OAuth
	Building OpenID Connect Atop OAuth
	Conclusion

	Unique Authorization Applications of OpenID Connect
	How OpenID Connect Enables Native SSO
	How to Use OpenID Connect to Enable Mobile Information Management and BYOD
	How OpenID Connect Enables the Internet of Things

	How To Control User Identity Within Microservices
	What Are Microservices, Again?
	Great, So What’s The Problem?
	The Solution: OAuth As A Delegation Protocol
	The Simplified OAuth 2 Flow
	The OpenID Connect Flow
	Using JWT For OAuth Access Tokens
	Let All Microservices Consume JWT
	Why Do This?

	Data Sharing in the IoT
	A New Economy Based on Shared, Delegated Ownership
	Connected Bike Lock Example IoT Device
	How This Works
	Option #1: Access Tables
	Option #2: Delegated Tokens: OpenID Connect
	Review:

	Securing Your Data Stream with P2P Encryption
	Why Encrypt Data?
	Defining Terms
	Variants of Key Encryption
	Built-in Encryption Solutions
	External Encryption Solutions
	Use-Case Scenarios
	Example Code Executions
	Conclusion

	Day Zero Flash Exploits and Versioning Techniques
	Short History of Dependency-Centric Design Architecture
	The Hotfix — Versioning
	Dependency Implementation Steps: EIT
	Lessons Learned
	Conclusion

	Fostering an Internal Culture of Security
	Holistic Security — Whose Responsibility?
	The Importance of CIA: Confidentiality, Integrity, Availability
	4 Aspects of a Security Culture
	Considering “Culture”
	All Organizations Should Perpetuate an Internal Culture of Security

	Resources
	API Themed Events
	API Security Talks:
	Follow the Nordic APIs Blog
	More eBooks by Nordic APIs:

	Endnotes

