

 true

 Securing The API Stronghold

 The Ultimate Guide to API Security

 Nordic APIs

© 2015 Nordic APIs AB

10. Day Zero Flash Exploits and Versioning Techniques

 [image:]

This month, a day-zero Flash exploit was disclosed, exposing potentially millions of users’ data. After an emergency patch was rushed out, two more exploits were quickly discovered, leading to a vocal demand for an end-of-life date for Flash.

This isn’t just a problem that affects media outlets and entertainment sites — vulnerabilities from services such as Flash and other dependencies commonly used in the production, use, and implementation of APIs are often subject to the same day-zero exploits and disclosures as the beleaguered Adobe Flash platform.

Here we discuss the nature of security in the modern dependency-centric design methodology, the importance of versioning, and some basic steps developers can take to secure their product throughout the API Lifecycle.

10.1 Short History of Dependency-Centric Design Architecture

Unauthorized access to resources on a network is as old as networking itself — in 1976 and 1978, for example, John Draper (aka Captain Crunch) was indicted for using a cereal-box toy whistle to generate tones for free calling around the world. Vulnerabilities in phone systems, cable television systems, and early internet-based subscription systems have long been the focus of skilled, intelligent, and persistent hackers.

In the old days, hacking into systems was a difficult prospect — once systems began to move away from tone generation (as in the phone system) and basic unencrypted passwords and usernames, gaining access to these systems became more difficult. Larger connected systems soon began to implement proprietary security solutions, managing Authentication and Authorization using internal services behind a secure connection to the outside world.

As the concept of user-oriented services such as payment processing, online shopping, and internet media providers began to take hold, however, a certain amount of standardization was required. With the burgeoning World Wide Web taking the world by storm on the standardized TCP/IP protocol stack, developers soon began to create systems that they could tie into their own code for further functionality.

The code created with these programs depended on the standardized programs to function — hence the term dependencies. Shockwave, Flash, and other such systems enabled developers to stop “re-inventing the wheel” each time they created a new product, and assured compatibility between disparate systems.

This shift in architecture design has created many of the problems API developers face today — the change from internal design to dependency-centric design has created a situation where dependency vulnerabilities are causing increased security concerns.

10.2 The Hotfix — Versioning

Seeing the issue with dependencies and the constant need to update and revise, developers soon implemented a solution known as versioning. With versioning, an API or service developer can elect to use the most up-to-date version, beta versions, and even old versions of a dependency for their code.

While this was largely meant for compatibility, allowing services to utilize older dependencies on machines without access or permissions to utilize newer dependencies, this also created a security situation where developers of the dependencies could ensure security by pushing out patches to fix vulnerabilities identified through testing and real-world use cases. While this made development simpler for the developers, it came with its own set of caveats.

Within the context of modern API development, versioning has two basic approaches, each with strengths and weaknesses.

The First Approach — Update and then Review

The first and most common approach is to Update and Review as dependency versions are released. By taking this approach, an API developer will immediately install updated dependencies or systems, and then review the update through changelogs and real-life use. This type of versioning often ignores beta or test releases, and focuses on stable releases.

While this seems like a good approach, there are some huge weaknesses. By not first looking at the code of the newest patch for the dependency, an API developer is placing blind faith in the dependency developer. This shifts responsibility from personal to external, creating a situation where the security of your ecosystem is placed squarely on the shoulders of someone without a vested interest in keeping your system safe.

Furthermore, this approach could have an inverse impact — by installing an untested or unreviewed version, an API developer could potentially open themselves up to more exploits than the previous unpatched dependency. For many, this is simply a caveat too big to ignore — it’s easier to fight a battle with an enemy you know than to wage a war with untold enemies you don’t.

The Second Approach — Review and then Update

The second and less common approach is to Review and Update. Unlike the first approach, this necessitates the developer first reviews the code of the dependency update, comparing it to previously known code. The developer installs only when entirely convinced of the update’s veracity and completeness.

This might seem counter-intuitive — “increase your security by not installing new updates”. The truth is that you dramatically increase your security by using this approach simply due to the fact that you will know what you are fighting.

Let’s say you use a dependency such as Flash for the web portal for your API. You know a set of exploits exist that can force a buffer overflow. Knowing this, what is the best solution — update this dependency to a new version with unproven, unreviewed code, or handle the buffer overflow with a prevention system and self-patch while you review the new update?

Simply put, an API developer should review each and every piece of code before implementation — or at the very least, compare it to the already existent code to ensure compatibility, security, and safety amongst a wide variety of their use cases.

10.3 Dependency Implementation Steps: EIT

So what then is the proper process an API developer should take to ensure that something like the recent day-zero Flash exploits don’t occur? This process can be summed up in three simple letters: EIT.

 	
E — Examine. Examine the code of the dependency patch you are intending to install. Check it against previous patches — has the code changed dramatically? If so, do you understand how it has changed? Use changelogs and bug trackers to examine issues with new patches. Use these resources to dig deep into how the dependency functions and why the patch had to be created.

 	
I — Implement. Once you have thoroughly examined the code of the dependency update, the dependency should be implemented. Ensure that compatibility between security systems and the updated dependency is maintained.

 	
T — Test. Test your API. Use penetration testing tools, try and trigger buffer overflows, and send un-validated calls and requests to see how your API responds. If you trigger any failures in the new patch, add your result and methods to duplicate to the bug tracker for your dependency after repairing your ecosystem to ensure it doesn’t continue to be an issue.

By following this set of guidelines, an API developer can ensure that their API dependencies and complete ecosystem functions as intended, ensuring long-term security and functionality throughout patching.

10.4 Lessons Learned

Dependencies are a wonderful thing — to be able to quickly create, implement, and patch, API developers must use a certain amount of dependencies. When these dependencies inevitably are exposed, a trend towards blaming the dependency developer quickly blooms.

This is a poor response — the fact of the matter is that the vulnerability in the API is not the fault of the dependency developer, but the fault of the API developer who adopted that dependency. Security is solely the domain of the developer — shifting responsibility to the user or to another developer is simply bad practice, and will lead to a less secure ecosystem.

10.5 Conclusion

Though the recent exploits are focused on Flash, this is not just an issue exclusive to platforms, either — vulnerabilities in methodologies and workarounds in code such as Scala, Go, and other such languages can lead to buffer overflows, memory leaks, and poor encryption. Issues within the cloud computing stack can expose huge security flaws. Even lack of effective encryption could result in the complete exposure of network resources which may betray your security ecosystem.

The takeaway? Check your dependencies, and check your code — security for your API is solely your responsibility.

2. The 4 Defenses of The API Stronghold

 [image:]

At one point or another, your secure resources will be attacked. This is the unfortunate reality of the modern era, where the skills necessary to invasively crack open a system, network, or API are more commonplace than ever. Millions in resources and potential revenue can be lost in a matter of hours due to poor planning or implementation of a security protocol.

Private information, trade secrets, and even personal data can be exposed to the skilled network penetrator and used against you in ways that are as extreme as they are varied. This chapter aims to bolster your defenses by defining the four foundations of API security: Authentication, Authorization, Federation, and Delegation.

The Importance of Comprehension

One of the most common failures of understanding in the development of API security is the idea that security is a “one size fits all” solution. The idea that channels of security function in a singular manner with variations only in the final end-user experience is as wrong as it is dangerous; this concept places the operator in a position of fewer tools at their disposal than those trying to “break the system”, in turn exposing your data to an extreme level of unnecessary risk.

This issue is made worse by a common misunderstanding regarding the differences between Authorization, Authentication, Federation, and Delegation — perpetuating a gulf of misinformation and misapplication. This chasm has caused many security woes in the API space.

Given that these four terms are what the entire concept of API security rides on, it is imperative that you understand them, their uses, and the implications of their adoption. Lacking a basic understanding of security protocols, methodologies, and concepts can mean the difference between a prosperous, growth-oriented business and a stagnant, deprecating business.

2.1 Balancing Access and Permissions

Having an API that allows for full access to the entirety of your systems and resources is an absolute nightmare — it’s akin to being the lord of a castle, and leaving the doors to your vault wide open — it entices theft by its very nature, and unnecessarily opens your materials to the public space. As lord of your keep, why give marauders an avenue for attack?

What then is the proper response? Do we leave systems open for the betterment of functionality and assume users have positive intentions? Or do we follow a complete opposite route, closing down every bit of functionality, designing only proprietary systems?

The solution lies in combination of both approaches. Assume your foe is out to get you at all times — but don’t let this affect your need to do business. Constant vigilance allows you to design your API in an intelligent way, opening only that which needs to be opened, and making sure those openings don’t tie into vital systems that could be damaged. Functionally, this means assigning elements of authority to API consumers based on the minimal amount of access they need to do the functions they are required to do. By assigning different roles and levels of responsibilities to clients, we can create a tiered environment that keeps our data safe.

Understanding the implications of this system is of prime importance — specifically the differences between the types of rights and authorities within the system as a whole. In our definitions, we’ll hark back to our castle defense analogy. The brave and powerful knight Lancelot is trying to return to the Arthurian court after a long month of fighting bloodthirsty marauders — let’s see what defenses he will have to pass…

2.2 Authentication: Identity

 [image: "'Tis I Lancelot cometh, bearing the password 'Guinevere.'" Authentication is two-fold, establishing trust with identity and a secret code.]
 “‘Tis I Lancelot cometh, bearing the password ‘Guinevere.’” Authentication is two-fold, establishing trust with identity and a secret code.

Authentication is a base security layer that deals specifically with the identity of the requesting party. Think of authentication as an agreement based on trust. When Lancelot reaches your drawbridge, he shouts his name along with a secret code to a guard stationed on the castle wall above. These two forms of identification will ensure that Lancelot is identified only as Lancelot, and that Lancelot is allowed to enter the castle.

In the real world, this level of security can take multiple forms. When a user chooses to request data or resources, they can face a number of protocols, log-in systems, and verification services. For instance, a user could log in using an authentication service that only requires a username and password. For greater levels of assurance, they may then be asked to provide a single-use token generated on a mobile device or keyfob.

2.3 Authorization: Access

 [image: "Says here you're Round Table status." Authorization considers what access level the user has with the system. [Image: CC-BY-SA-3.0 via Wikimedia Commons]]
 “Says here you’re Round Table status.” Authorization considers what access level the user has with the system. [Image: CC-BY-SA-3.0 via Wikimedia Commons]

Authorization is a completely separate level of security, though it’s often confused with authentication; while authentication verifies that the requester is who they say they are, authorization determines the access level they should be granted.

As Lancelot waits for the drawbridge to come down and allow him in, the guard steps back and checks his “Ye Olde Book of Permissiones” to make sure Lancelot has the right to enter the castle. This is different from Authentication. Whereas Lancelot proved he was who he said he was, Authorization makes sure he has the right to enter the castle, and if he indeed has that right, what levels he can access within the castle. These permissions are granted to Lancelot by King Arthur, allowing Lancelot access to The Round Table, among other resources that peasants can’t access.

Authorization is extremely important, but is often overlooked. It is very easy for API developers to assume that, because they need access to the API for their systems, setting the user default permissions to “SysOp” or equivalent full access is acceptable. This is a faulty line of thinking. While the developer inherently requires a higher level of access than the typical user, a consumer may only need a small portion of calls or functions at any one time. In that situation, leaving excess operations open makes the system more vulnerable to hacks and unauthorized access.

2.4 Federation: Reusing Credentials & Spreading Resources

Federated security is a multi-purpose system:

 	for users, federated security systems allow for the use of a small set of credentials with multiple systems, services, applications, or websites.

 	for administrators, federated security allows for the separation between the resources requested by the user and the systems used to authenticate and grant authority to the user.

 	For organizations, it allows them to centrally manage the trust relationships they have with one another and ensure, cryptographically, that that trust is enforceable.

Same User Credentials Across Multiple Services

With federation, the user is granted the ability to use the same set of credentials across multiple services. By having the authentication take place in one single domain, other security realms that trust this primary domain can reuse the authentication and trust the authenticity of the identity established. This results in what is to what is called a federation.

Any system in this federation can accept the credentials of the authentication domain. The primary domain is what we call an Identity Provider (IdP) or Asserting Party (AP); the other security domains that trust the IdP to authenticate users are referred to as Relying Parties (RP) or Service Providers (SP). Authentication and identity data are passed between these parties using tokens. These Tokens are minted by a system called a Security Token Service (STS) or a Federation Service (OAuth Authorization Server and an OpenID Connect Provider are examples of an STS and a Federation Service, respectively.)

The end result is that a STS hands a token to the user after they first log into that authentication service. When the user then requests access to another domain, the domain registers that the user already has a token, and grants it access without requesting another log-in.

Introducing Realms

 [image: A federated backend stores resources across various systems, allowing users to access multiple services with the same credentials]
 A federated backend stores resources across various systems, allowing users to access multiple services with the same credentials

The King knows that knights like Lancelot need to enter his castle; he also knows that his castle is situated in a very bad location, prone to raids. Because of this, the King has set up another castle some miles away in a more defensible position to house other precious resources. He does this to ensure security between the main castle and the more fortified castle that contains other valuable treasures. This adds an entirely separate layer of security, acting as a “buffer.” Federation allows for Single Sign-on (SSO) across these different “security domains” or “realms.”

In traditional systems that do not use Federation, the user would log into a server that is in a particular security domain/realm. This domain would include not only this authentication system but also the actual resources the user is attempting to access. While this works fine in some cases, if the authentication and authorization protocols were to be broken or violated, then the barrier between the resources and the user would also be broken. This could allow an attacker to take complete control of the domain.

When A Breach Occurs

With federated security, if a breach occurs in the Identity Provider, the Relying Parties can revoke the trust it had previously placed in that party — not all systems are compromised. Entry to all federated authentication requests made by any user to the resource server are refused. Imagine the King and his knights have retreated to the fortified castle after the main castle was overrun by raiders. They no longer allow entrance from people requesting access to the fortified castle for fear that they are actually raiders using stolen code words.

2.5 Delegation: The Signet of (Limited) Power

 [image: Delegation can be compared to a signet, carrying the seal and permissions granted by an API provider]
 Delegation can be compared to a signet, carrying the seal and permissions granted by an API provider

Delegation is another process by which access and rights can be given to authorized users while maintaining a relatively limited amount of access. Whereas federation works by giving the user a token to use on multiple domains, delegation works by authorizing a user to function partially as if they were another user.

King Arthur, seeing the plight of Lancelot the Knight, has decided to make future access to his Kingdom easier. He creates a ring with his kingly seal set in pearl, and gives it to Lancelot. He then instructs his subordinates to follow Lancelot’s orders, given that they fall within his rights as a Knight and do not exceed the authority previously expressly given to him by the King. In this way, when Lancelot presents his signet, he is seen to be acting under the orders of the King, and does not need to further verify himself or be authenticated.

For web users, this is done on a site-by-site basis. For example, let’s assume the user is trying to log in to “http://mail.corporate.org”. Under the federation system, they would first have to login on a designated portal page to access any additional resources in the federation using their token. Under the delegation system, “http://mail.corporate.org” would look to see what rights they have been given and who they are acting on behalf of. As the user is coming from “http://profile.corporate.org” and has already logged in on that page using an authenticated account with elevated privelages, the mail server allows access.

2.6 Holistic Security vs. Singular Approach

Most important to all of these considerations is the way we treat the fundamental security system we are implementing. Far too often, developers fall into the trap of considering security to be one-sided. An average user might consider having three authentication devices to be a good security check; but if that authentication server were to ever go offline, you could have an infinite number of authentication-based security systems and your network would still be exposed. By thinking of security as a singular approach rather than a holistic one, you are placing your API and your system in far more danger than is necessary.

Consider security from the constraints of our story concerning Lancelot, and put yourselves in the rather silky, comfortable shoes of the noble and wise King Arthur. You know invaders are coming; in fact, you can see them crossing the mountain now, preparing to invade. Examine your security, and really contemplate your entire API Stronghold.

Would you consolidate all your jewels and gold in one fortress and defend with all men on a single wooden gate? — OR — would you rather spread your wealth across multiple fortresses each with an impassable moat, a manned wooden gate, a manned metal gate, and armed warriors waiting just beyond? Operationally, costs may be the same, but the security is drastically different. In the first scenario, the enemy would only have to destroy the wooden gate once to get into your castle, whereas in the second scenario, they would have to pass four separate and daunting obstacles to even get a peek at a single inner keep. A multi-layered stronghold is how you must consider security in the API space.

2.7 Application For APIs

When establishing a security system for your API, understanding Authentication, Authorization, Federation, and Delegation is vitally important. Deciding the access and specific circumstances behind sharing your resources will help establish a security shield to protect internal assets and solve many security issues before they arise.

For the modern system administrator, there is a wide range of tools and services available that make implementation of any of these types of security relatively pain-free. Services like OAuth and OpenID Connect can be integrated early in the development cycle of the API, and third-party authentication services can even be implemented after the API is deployed.

While all the above systems can work in tandem with one another, knowing when and where each are best applied makes for a better system on the whole, improving your security, usability, and longevity. In the following chapters we embark on a more specific journey to define these actors and workflows.

8. Data Sharing in the IoT

 [image:]

We consistently put our personal data at risk. API security concerns sky rocket as the user’s desire to pass access to others steadily increases. With the rise of Internet of Things (IoT) devices, the ability to share the use of physical connected devices makes access management an increasing concern.

Whether sharing a collaborative document or car location, users routinely pass data and access to family members, friends, coworkers, clients, or fellow app users — most often using APIs. But how can these data exchanges be accomplished in a secure and efficient way using existing standards?

In a session with Nordic APIs, Jacob Ideskog demonstrates how this is possible using OAuth enabled with OpenID Connect. In this chapter we’ll examine how to implement secure data sharing for a new bike lock IoT device — a real world example of introducing a best practice approach to identity management in the IoT realm.

8.1 A New Economy Based on Shared, Delegated Ownership

In addition to dramatically altering the way enterprise business is done, APIs are fueling a major consumer shift. With the dawn of smartphone ubiquity, sensors, and IoT devices, new subscription services and businesses have quickly emerged around the concept of sharing access to personal property.

Homeowners are becoming part time business owners with Airbnb, citizens with a car and free time are making extra income driving with Uber or Lyft. Apps enable users to share their office or work space, or use communal cars with Car2Go or ZipCar. Put simply, the Anything-as-a-Service (XaaS) model is the wave of the future.

Sharing ownership comes with inherent risks. Risks on the side of the party using the property, and risks within the data exchange process. So how does an app avoid security risks to ensure ownership is delegated correctly? What specific technologies and workflows offer the best route to access management?

8.2 Connected Bike Lock Example IoT Device

Take Skylock, a crowdfunded initiative to develop a solar powered connected smart bike lock. It’s loaded with features — a built in anti-theft feature, accelerometer to analyze movement, and automatic safety response alerts. Skylock also allows keyless entry, and has an ability to share access remotely with friends using the Skylock app.

The Skylock lock and app likely utilize many first or third party APIs to power location, mapping, safety response, and more. But out of all the software powering the scenarios presented in their promo video, the most complex part of this system is likely the sharing of bike lock access that occurs between the main character and his girlfriend.

8.3 How This Works

In a scenario like this one, the user typically authorizes the app to access the API. We’ll call the guy Adam, and his girlfriend Bianca. Let’s say Adam wants to share access so that Bianca’s app can access Adam’s account via the API. In this case, sharing is delegating use.

Can’t OAuth be used for that? Not exactly. OAuth is really about the User delegating access from the User to the Application, i.e. user-to-app delegation. Typically, in OAuth the app requests access to an API and the user grants that access. OAuth then gives the app a token.

Rather, this new situation is more complicated. Since Adam wants to allow Bianca to access his account, delegating user responsibility to Bianca, we are dealing with user-user delegation. There are two ways to do this. Either you set up a database or table around the API for Bianca to gain access to in order to retrieve data, or, the system grants Bianca an access token that belongs to someone else, i.e. Adam, granting Bianca equivalent powers.

8.4 Option #1: Access Tables

In the first approach, we use the API to retrieve data from an access table. The flow is as follows:

 	Bianca’s app contacts the OAuth server.

 	The OAuth server challenges Bianca to enter her credentials (username/password).

 	The OAuth server accepts, and issues her own account’s access token.

 	Bianca uses this token to send a request to the API. At this point, she must somehow instruct the API that she intends to perform on other resources — she must distinguish between users to access Adam’s account. (This step is unfortunate as it requires tangling identity management within the API itself).

 	The API talks to the database to verify that the access is real, and validates access.

 	The API then responds with Adam’s data to the app.

Looking at it, this is architecturally the simplest flow, but however, implementation is the hardest. This is especially difficult when building microservices that plugin to many APIs. We may be building many small APIs that need to implement and contact services to repeatedly allow data access.

These microservices may be doing many separate things. Their communication protocols may not be similar, and on top of that, if you have user info tangled into that data, you’re going to have to program a lot — a lot to leave up to developers to handle.

8.5 Option #2: Delegated Tokens: OpenID Connect

OpenID Connect is a companion protocol to OAuth. Enabling an OAuth server with OpenID Connect adds an identity layer on top. Now our API not only knows what access is being given, but it knows who is accessing that data.

This is processed using the OpenID Connect Userinfo endpoint, a simple endpoint that can be called using a GET verb with an authorization token. The Userinfo endpoint responds with a JSON document, containing basic user information such as name, phone, email, etc. With a user token you can retrieve Userinfo to access user information — a pretty simple process.

We can take this response, and change the meaning by adding access tokens in this response. This is how we list the delegations. We’ll use the Userinfo endpoint to reissue tokens, or downgrade tokens. In the case of our bike lock, Bianca receives an access token for the Resources Owner, Adam, containing meaningful data and scopes to specify who the authenticator is — in our case, Bianca.

The new flow is like this:

 	The app requests access from the OpenID Connect enabled OAuth server.

 	The server challenges Bianca to enter her credentials (username/password).

 	Bianca receives her own access token.

 	Bianca then calls the Userinfo endpoint with her access token.

 	The OpenID Connect enabled server takes this access token.

 	The server responds with a second token (Adam’s access token). This came from JSON document.

 	BIanca now has 2 tokens. When Bianca needs to operate on Adams data she uses the token she got from the UserInfo endpoint. If she needs to do stuff on her on account, she uses the initial access token she got.

 	The API will at all times receive one token, and can look at it to see which user it should operate on.

Sharing Access Between Microservices

As we learned in How to Control User Identity Within Microservices, handling user data within microservices is a very similar process. We send in an access token, and it terminates that token. If we want to access someone else’s account, we simply use a different token. To regulate this process we can place a gateway at this intersection. It doesn’t really matter — regular or delegated access tokens are acted upon in the same way. Our normal access case won’t have to be altered — meaning that modifying the backend is not necessary.

Ideskog admits a possible drawback is that if an app must maintain a multitude of tokens. When delegating tons of tokens with many people involved in a single flow, you may run into system bloat.

8.6 Review:

Thanks to smart approaches to delegating access, Adam can remotely share his bike lock with Bianca in a secure and confident manner. These methodologies also transfer into identity management within web apps, APIs, or IoT situations in which users must grant functionality to other users. As a review, to accomplish this there are two alternatives:

Access Table Lookup Approach: Identity is built into the API, and a database is stored access lookup is stored.

 	Easy to implement form an ADMIN perspective

 	Every API needs to know about delegation

 	Every API needs to resolve access rights

 	With microservices this becomes a LOT heavier.

Delegated Tokens Approach: Identity is removed form API, thrown into OpenID Connect server and OAuth server.

 	Easy to implement on the API side

 	APIs work the same for regular access and delegated access

 	App must maintain multiple tokens

It’s important to remember that OAuth is user-to-app delegation, not user-to-user delegation. However, if we throw on OpenId Connect and use the Userinfo endpoint, we can add user-to-user delegation and be complete with quality access sharing standards.

 Disclosure:

 	Skylock is just used as an illustrative example, and we have no affiliation with the company and don’t know if they used this specific technique in their system.

 Table of Contents

 	
 Preface

 	
 1. Introducing API Security Concepts

 	
 1.1 Identity is at the Forefront of API Security

 	
 1.2 Neo-Security Stack

 	
 1.3 OAuth Basics

 	
 1.4 OpenID Connect

 	
 1.5 JSON Identity Suite

 	
 1.6 Neo-Security Stack Protocols Increase API Security

 	
 1.7 The Myth of API Keys

 	
 1.8 Access Management

 	
 1.9 IoT Security

 	
 1.10 Using Proven Standards

 	
 2. The 4 Defenses of The API Stronghold

 	
 2.1 Balancing Access and Permissions

 	
 2.2 Authentication: Identity

 	
 2.3 Authorization: Access

 	
 2.4 Federation: Reusing Credentials & Spreading Resources

 	
 2.5 Delegation: The Signet of (Limited) Power

 	
 2.6 Holistic Security vs. Singular Approach

 	
 2.7 Application For APIs

 	
 3. Equipping Your API With the Right Armor: 3 Approaches to Provisioning

 	
 3.1 Differences In API Approaches: Private, Public, & Partner APIs

 	
 3.2 Considerations and Caveats

 	
 3.3 So Where Is The Middle Ground?

 	
 3.4 Real-World Failure

 	
 3.5 Two Real-World Successes

 	
 3.6 Conclusion

 	
 4. Your API is Vulnerable: 4 Top Security Risks to Mitigate

 	
 4.1 Gauging Vulnerabilities

 	
 4.2 Black Hat vs. White Hat Hackers

 	
 4.3 Risk 1 - Security Relies on the Developer

 	
 4.4 Risk 2 - “Just Enough” Coding

 	
 4.5 Risk 3 - Misunderstanding Your Ecosystem

 	
 4.6 Risk 4 - Trusting the API Consumer With Too Much Control

 	
 4.7 Conclusion

 	
 5. Deep Dive into OAuth and OpenID Connect

 	
 5.1 OAuth and OpenID Connect in Context

 	
 5.2 Start with a Secure Foundation

 	
 5.3 Overview of OAuth

 	
 5.4 Actors in OAuth

 	
 5.5 Scopes

 	
 5.6 Kinds of Tokens

 	
 5.7 Passing Tokens

 	
 5.8 Profiles of Tokens

 	
 5.9 Types of Tokens

 	
 5.10 OAuth Flow

 	
 5.11 Improper and Proper Uses of OAuth

 	
 5.12 Building OpenID Connect Atop OAuth

 	
 5.13 Conclusion

 	
 6. Unique Authorization Applications of OpenID Connect

 	
 6.1 How OpenID Connect Enables Native SSO

 	
 6.2 How to Use OpenID Connect to Enable Mobile Information Management and BYOD

 	
 6.3 How OpenID Connect Enables the Internet of Things

 	
 7. How To Control User Identity Within Microservices

 	
 7.1 What Are Microservices, Again?

 	
 7.2 Great, So What’s The Problem?

 	
 7.3 The Solution: OAuth As A Delegation Protocol

 	
 7.4 The Simplified OAuth 2 Flow

 	
 7.5 The OpenID Connect Flow

 	
 7.6 Using JWT For OAuth Access Tokens

 	
 7.7 Let All Microservices Consume JWT

 	
 7.8 Why Do This?

 	
 8. Data Sharing in the IoT

 	
 8.1 A New Economy Based on Shared, Delegated Ownership

 	
 8.2 Connected Bike Lock Example IoT Device

 	
 8.3 How This Works

 	
 8.4 Option #1: Access Tables

 	
 8.5 Option #2: Delegated Tokens: OpenID Connect

 	
 8.6 Review:

 	
 9. Securing Your Data Stream with P2P Encryption

 	
 9.1 Why Encrypt Data?

 	
 9.2 Defining Terms

 	
 9.3 Variants of Key Encryption

 	
 9.4 Built-in Encryption Solutions

 	
 9.5 External Encryption Solutions

 	
 9.6 Use-Case Scenarios

 	
 9.7 Example Code Executions

 	
 9.8 Conclusion

 	
 10. Day Zero Flash Exploits and Versioning Techniques

 	
 10.1 Short History of Dependency-Centric Design Architecture

 	
 10.2 The Hotfix — Versioning

 	
 10.3 Dependency Implementation Steps: EIT

 	
 10.4 Lessons Learned

 	
 10.5 Conclusion

 	
 11. Fostering an Internal Culture of Security

 	
 11.1 Holistic Security — Whose Responsibility?

 	
 11.2 The Importance of CIA: Confidentiality, Integrity, Availability

 	
 11.3 4 Aspects of a Security Culture

 	
 11.4 Considering “Culture”

 	
 11.5 All Organizations Should Perpetuate an Internal Culture of Security

 	
 Resources

 	
 API Themed Events

 	
 API Security Talks:

 	
 Follow the Nordic APIs Blog

 	
 More eBooks by Nordic APIs:

 	
 Endnotes

 Guide

 	
 Begin Reading

[image: Securing The API Stronghold]

Resources

API Themed Events

To learn about upcoming Nordic APIs meetups, conferences, and seminars, subscribe to our newsletter or check our event calendar. Here is a list of Nordic APIs sessions referenced in this e-book, by order of appearance. Also follow our YouTube channel for more videos.

API Security Talks:

 	
The Nuts and Bolts of API Security: Protecting Your Data at All Times, Travis Spencer, Twobo Technologies

 	
Integrating API Security Into A Comprehensive Identity Platform, Pamela Dingle, Ping Identity

 	
Pass On Access: User to User Data Sharing With OAuth2, Jacob Ideskog, Twobo Technologies

 	
Building a secure API: Overview of techniques and technologies needed to launch a secure API, Travis Spencer, Twobo Technologies

 	
OpenID Connect and its role in Native SSO Paul Madsen, Ping Identity

 	
OAuth and OpenID Connect for Microservices, Jacob Ideskog, Twobo Technologies

Follow the Nordic APIs Blog

Much of our eBook content originates from the Nordic APIs blog, where we publish in-depth API-centric thought pieces and walkthroughs twice a week. Sign up to our newsletter to receive blog post updates via our Weekly Digest, or visit our blog for the latest posts!

More eBooks by Nordic APIs:

Visit our eBook page to download any of the following eBooks for free:

 	
The API Lifecycle: A holistic approach to maintaining your API throughout it’s entire lifecycle, from conception to deprecation.

 	
Developing The API Mindset : Details the distinction between Public, Private, and Partner API business strategies with use cases from Nordic APIs events.

 	
Nordic APIs Winter Collection: Our best 11 posts published in the 2014 - 2015 winter season.

 	
Nordic APIs Summer Collection 2014: A handful of Nordic APIs blog posts offering best practice tips.

9. Securing Your Data Stream with P2P Encryption

 [image:]

A system is only as secure as its weakest part — the most expensive chain in the world wrapped around deeply sunk steel columns is worthless if tied together with zip ties. The same holds true for security in the API space. The most secure, authenticated, stable system is only as secure as its weakest point. By and large, this weakness lies in the data stream.

In this chapter, we discuss the importance of securing your API data stream, the various technologies necessary to do so, and the benefits and drawbacks of various offerings in the point-to-point (P2P) encryption industry.

9.1 Why Encrypt Data?

Systems are tricky things — because a system is by definition a collection of objects working towards a singular goal or collection of goals, their efficiency and security are directly tied to one another. Think of a network or an API server cluster as a suit of armor — you might have the best plate steel, the most intricately laid bronze work, and the most reinforced shield, but without a sturdy and protective helmet, you might as well be walking into battle nude.

This is a basic concept in network security, but it bears repeating (and remembering) - your system is only as strong as its weakest component.

Enter encryption. Encryption can take an old decrepit server running out of data software and encrypt the outgoing data stream into a nigh-unbreakable juggernaut. Compare encrypted traffic breaking to non-encrypted traffic breaking.

Let’s say Bob sends a remote URI call to a server unencrypted. This call carries his key to the server, which then relays the information requested. With a single node in the middle listening to and capturing traffic (launching a Man-in-the-Middle Attack, this information can then be used in a session replay attack, compromising the integrity and confidentiality of your system.

Let’s say that Bob did the same remote URI call, but instead utilized a 2048-bit SSL certificate encryption system from DigiCert. Even if that node in the middle was able to completely capture the traffic, DigiCert estimates that it would take 6.4 quadrillion years to crack the data using a 2.2Ghz based system with 2GB of RAM — that’s longer than the total time the universe has existed.

This amount of security is clearly valuable, and it’s easy and cheap to implement — infrastructure/network solutions such as HTTPS, SSL, and TLS utilize ports and network technologies to secure the data stream as it leaves and enters the network, and these solutions are typically already built into most modern servers and workstations.

Third party solutions are also generally low in cost, with some solutions falling into the “open software” methodology of releasing programs for free to garner community support and iteration.

Keep in mind that encryption solutions are far different from methodologies that derive from encryption. For instance, API Keys are one way to secure your datastream, but in and of themselves, they do not encrypt traffic — this is in fact one of the greatest weaknesses of keys. Do not assume any solution that is not expressly encryption oriented will encrypt traffic.

9.2 Defining Terms

Before we dive too deeply into encryption solutions, we need to understand a few terms unique to encryption. These terms can have different meanings used in different industries, so it is very important to remember that these definitions may only apply to this very specific use-case.

In this piece, we are specifically discussing P2P encryption. While this often has connotations in the API space of payment processing, in the larger cryptanalysis field, P2P has a looser definition. P2P simply means the point-to-point cycle consisting of a provider of data, the data stream carrying the data, and a consumer of data.

When discussing encryption, the concept of the “data stream” is also very important to understand. A data stream is the flow of data from a generating point to a receiving point — that is, from the API itself to the client requesting the data. Think of it like the postal service — the process from when a letter is put into a mailbox to when it arrives in the mailbox it was addressed to is akin to a data stream.

Most important, encryption is a method by which data is codified or obfuscated, preventing unauthorized access, viewing, or modification. This can be done in a variety of ways, but all of these possibilities to date fall into two distinct categories — Block Encryption and Stream Encryption.

Block Encryption is exactly what it sounds like — the data stream is put through an encryption method in blocks or chunks of data, usually in a set size dictated by the encryption method. For example, in the AES (aka Rijndael) method of block encryption, these blocks are limited to 128 bits of information, meaning that only 128 bits of data can be encrypted at a time.

Stream Encryption, on the other hand, encrypts the data stream in real time — data is not encrypted in blocks, but rather as a series of binary signals. This method is resource intensive, and is often easily cracked due to the fact that encryption methods can be detected by simply listening to the stream and finding patterns in the ciphertext output. For this reason, Stream Encryption is not used much.

9.3 Variants of Key Encryption

There are similarly two types of encryption commonly employed in the network space.

The first, Public-key, uses algorithms like the RSA Asymmetric Block Cipher or ElGamal to encode communications. This method uses a key pair, from which both keys are derived, with one key functioning to encrypt the data, and the other to decrypt. The decrypting key is kept secret, and is typically tied to the recipient, whereas the encryption key is public, allowing anyone to encrypt data for that particular recipient.

This is the most secure version of encryption due to the fact that the codes are separate, but defined against one another. The private key is generated from a public key, and that public key is in itself a secure key. By setting up the system this way, an unauthorized user or node could intercept the full decrypted public key and still have no access to the user system; likewise, they could intercept the full decrypted private key, and again have no access to the server.

Another form of encryption is the Symmetric-key methodology, which utilizes the same two keys to both encrypt and decrypt. This method is secure for local use (such as encrypting password databases on a root server), but should not be used over a network in its plain form without encrypting the session key or data stream using a secondary assymetric encrypted protocol.

The Symmetric-key method is considered to be a less-secure solution than the Public-key method due to the fact that both the encryption and decryption key are the same key — because of this, a theoretical unauthorized user could obtain either the server key or the client key, and access any resource he or she wanted to. Public keys should not be inherently trusted either — a user must know who owns the private part of the key to ensure security. Nonetheless, Asymmetric-key encryption is typically a stronger solution despite this.

9.4 Built-in Encryption Solutions

The most common and easily implemented solution is HTTPS. HTTPS, standing for Hyper Text Transfer Protocol Secure, is a protocol by which HTTP, the language of the internet, is encrypted using a variety of algorithms, including RSA, ECDH (Elliptic curve Diffie–Hellman), and Kerberos.

This encrypted data is then sent over a secure protocol to the end user for decryption. This transportation happens over two main protocols — SSL and TLS.

SSL, or Secure Sockets Layer, utilizes a Public-key or Asymmetric algorithm to transmit Symmetric encrypted data — this two-part process provides incredible security and agility in encryption. This protocol uses an SSL Certificate that is issued in response to a Certificate Signing Request (CST), which is then validated. SSL is a complex system, but this complexity is largely hidden from consumers. This hidden complexity makes the user-experience that much better, improving the impression of your service.

Likewise, HTTPS can also utilize the TLS protocol. TLS, or Transport Layer Security, is the updated version of SSL, and is considered the modern protocol to use over SSL whenever possible. TLS functions nearly identical to SSL, with very few exceptions — notably the key derivation system and key exchange process.

It doesn’t matter which method you choose (though many administrators would suggest you utilize the version just before the most up-to-date protocol version to ensure functionality) — just remain consistent! Consistency is a key part of success in API development, so whatever you choose, stick with it.

9.5 External Encryption Solutions

While HTTPS is a very flexible system, there are certain use-cases that may require third party point-to-point encryption methods designed for very specific purposes. Luckily, the API space is populated with encryption providers utilizing a variety of technologies and systems to ensure a secure ecosystem.

Take for example the CyberSource payment encryption service. This service utilizes card-reader software tied into hardware security modules to send data remotely over secure channels, increasing security and data loss prevention success rates.

For a more general solution, a system like OAuth 1.0a pairs authorization with data encryption. Utilizing a signature, typically HMAC-SHA1, OAuth 1.0a sends this data over plain communication lines (though TLS/SSL can be used). Because OAuth 1.0a does not send the password in transit directly, this all but removes the threat of sniffed traffic and captured sessions.

9.6 Use-Case Scenarios

Given that encryption of point-to-point data transmission is so vitally import for APIs transferring secure data, such as passwords, health records, payment processing, etc., view encryption as an absolute requirement in any situation where there is a fiscal value assigned to data. If your data could be sold, it should be protected. If there’s money involved, you can be sure there are people somewhere who want to take that stream and use it for their own purposes.

In some other cases, encryption might be required. Federal contracts, government-to-civilian client implementation, and healthcare APIs may be required to encrypt traffic as part of contractual negotiations or laws such as HIPAA (the Health Insurance Portability and Accountability Act of 1996).

That’s not to say, however, that encryption is only useful for secure situations. As users increasingly value their privacy, implementing encryption standards can be as much a security feature as a selling point to potential customers.

9.7 Example Code Executions

By and large, these methods are incredibly simple for the user and the API provider to implement. For instance, in curl, you can simply use the following path command:

…
curl -3 -capath –ssl https://api.website.com
…

And with that small piece of code, you’re now utilizing a local certificate to sign and encrypt your data connection.

For consumers, using your web app or API in a secure mode is as simple as connecting over HTTPS. For example, when connecting to the Facebook web application, a variety of APIs are used to connect user accounts to data. Simply logging in under https://www.facebook.com rather than the conventional http://www.facebook.com will trigger a secure HTTPS connection utilizing the encryption chosen by the provider.

9.8 Conclusion

Security is an important thing to consider — it should be one of the first things you consider in the API lifecycle. Regardless of whether your API is public or private, first or third party, a well-deployed security solution will make your API more useful, secure, and attractive.

Preface

As the world becomes more and more connected, digital security becomes an increasing concern. Especially in the Internet of Things (IoT), Application Programming Interface (API), and microservice spaces, the proper access management needs to be seriously addressed to ensure web assets are securely distributed.

During the Nordic APIs World Tour - a five day international conference we held in May 2015 - our speakers consistently reiterated the importance of API security. So, to help providers secure their systems, we at Nordic APIs have collated our most helpful advice on API security into this eBook; a single tomb that introduces important terms, outlines proven API security stacks, and describes workflows using modern technologies such as OAuth and OpenID Connect.

Founded on insights from identity experts and security specialists, this knowledge is crucial for most web service platforms that needs to properly authenticate, control access, delegate authority, and federate credentials across a system.

Following an overview of basic concepts, we’ll dive into specific considerations such as:

 	Vulnerabilities and what whitehackers look for

 	How to implement a secure versioning strategy

 	The three distinct approaches to API licensing and availability

 	Performing delegation of user identity across microservices and IoT devices

 	Using the Neo-Security stack to handle identity and access control with OAuth 2.0 and OpenID workflows

 	Differentiating Authentication, Authorization, Federation, and Delegation, and the importance of each

 	Using OpenID Connect for Native Single Sign On (SSO) and Mobile Identity Management (MIM)

 	Ways to introduce a culture of security into your organization

 	Securing your data stream at the point-to-point level

 	And more…

Please read on, share, and enjoy the 5th free eBook from the Nordic APIs team!

 – Bill Doerrfeld, Editor in Chief, Nordic APIs

Connect with Nordic APIs:

Facebook | Twitter | Linkedin | Google+ | YouTube

Blog | Home | Newsletter | Contact

